ML Aggarwal Trigonometrical Ratios of Standards Angles Exe-18.2 Class 9 ICSE Maths Solutions Ch-18. Step by Step Solutions of Exe-18.2 questions on Trigonometrical Ratios of of Standards Angles for ML Aggarwal ICSE Class 9th Mathematics. Visit official website CISCE for detail information about ICSE Board Class-9.
ML Aggarwal Trigonometrical Ratios Exe-18.2 Class 9 ICSE Maths Solutions
Board | ICSE |
Subject | Maths |
Class | 9th |
Chapter-18 | Trigonometrical Ratios of Standards Angles |
Topics | Solution of Exe-18.2 Questions |
Academic Session | 2024-2025 |
Solution of Exe-18.2 Questions on Trigonometrical Ratios of Standards Angles
ML Aggarwal Class 9 ICSE Maths Solutions Ch-18
Question 1.
(i) cos 18°/sin 72°
(ii) tan 41°/cot 49°
(iii) cosec 17°30’/sec 72°30’
Answer :
(i) cos 18°/sin 72°
= cos 18°/sin (90° – 18°)
= cos 18°/cos 18°
= 1
(ii) tan 41°/cot49°
= tan 41°/cot (90° – 41°)
= tan 41°/tan 41°
= 1
(iii) cosec 17°30’/sec 72°30’
= cosec 17°30’/sec (90° – 17°30’)
= cosec 17°30’/cosec 17°30’
= 1
Question 2.
(i) cot 40°/tan 50° – ½ (cos 35°/sin 55°)
(ii) (sin 49°/cos 41°)2 + (cos 41°/sin 49°)2
(iii) sin 72°/cos 18° – sec 32°/cosec 58°
(iv) cos 75°/sin 15° + sin 12°/cos 78°– cos 18°/sin 72°
(v) sin 25°/sec 65° + cos 25°/ cosec 65°.
Answer :
(i) cot 40°/tan 50° – ½ (cos 35°/sin 55°)
It can be written as
=1/2
(ii) (sin 49°/cos 41°)2 + (cos 41°/sin 49°)2
= 12 + 12
= 1 + 1
= 2
(iii) sin 72°/cos 18° – sec 32°/cosec 58°
= 1 – 1
= 0
(iv) cos 75°/sin 15° + sin 12°/ cos 78° – cos 18°/sin 72°
= 1 + 1 – 1
= 1
(v) sin 25°/sec 65° + cos 25°/ cosec 65°
= (sin 25° × cos 65°) + (cos 25° × sin 65°)
= [sin 25° × cos (90°– 25°)] + [cos 25° × sin (90° – 25°)]
= (sin 25°× sin 25°) + (cos 25° × cos 25°)
= sin2 25° + cos2 25°
= 1
Question 3.
(i) sin 62° – cos 28°
(ii) cosec 35° – sec 55°.
Answer :
(i) sin 62° – cos 28°
= sin (90° – 28°) – cos 28°
= cos 28° – cos 28°
= 0
(ii) cosec 35° – sec 55°
= cosec 35° – sec (90° – 35°)
= cosec 35° – cosec 35°
= 0
Question 4.
(i) cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°
(ii) sec 17°/cosec 73° + tan 68°/cot 22° + cos2 44° + cos2 46°.
Answer :
(i) cos2 26° + cos 64° sin 26° + tan 36°/ cot 54°
= cos2 26° + cos (90° – 26°) sin 26° + tan 36°/cot (90° – 36°)
cos (90° – θ) = sin θ
cot (90° – θ) = tan θ
sin2 θ + cos2 θ = 1
= cos2 26° + sin2 26° + tan 36°/tan 36°
= 1 + 1
= 2
(ii) sec 17°/cosec 73° + tan 68°/cot 22° + cos2 44° + cos2 46°
= sec (90° – 73°)/cosec 73° + tan (90° – 22°)/cot 22° + cos2 (90° – 46°) + cos2 46°
= cosec 73°/cosec 73° + cot 22°/cot 22° + sin2 46° + cos2 46°
sin2 θ + cos2 θ = 1
= 1 + 1 + 1
= 3
Question 5.
(i) cos 65°/sin 25° + cos 32°/sin 58° – sin 28° sec 62° + cosec2 30°
(ii) sec 29°/ cosec 61° + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3 (sin2 38° + sin2 52°).
Answer :
(i) cos 65°/sin 25° + cos 32°/sin 58° – sin 28° sec 62° + cosec2 30°
= cos 65°/sin (90° – 65°) + cos 32°/sin (90°–32°) – sin 28° sec (90°–28°) + cosec2 30°
= cos 65°/cos 65° + cos 32°/cos 32° – sin 28° cosec 28° + cosec2 30°
cosec 30° = 2
= 1 + 1 – 1 + 4
= 5
(ii) sec 29°/cosec 61° + 2 cot8° cot17° cot45° cot73° cot82° – 3 (sin2 38° + sin2 52°)
= sec 29°/cosec (90° – 29°) + 2 cot8° cot17° cot45° cot (90°–17°) cot (90°–8°) – 3 [sin238° + sin2 (90°–38°)]
= sec 29°/sec 29° + (2 cot8° cot17° × 1 × tan17° tan8°) – 3 (sin2 38° + cos2 38°)
= 1 + (2 cot 8° tan 8° cot 17° tan 17° × 1) – (3 × 1)
cosec (90° – θ) = sec θ
⇒ cot (90° – θ) = tan θ
⇒ sin2 θ + cos2 θ = 1
= 1 + (2 × 1 × 1 × 1) – 3
= 1 + 2 – 3
= 0
Question 6. Express each of the following in terms of trigonometric ratios of angles between 0° to 45°:
(i) tan 81° + cos 72°
(ii) cot 49° + cosec 87°.
Answer :
(i) tan 81° + cos 72°
= tan (90° – 9°) + cos (90° – 18°)
= cot 9° + sin 18°
(ii) cot 49° + cosec 87°
= cot (90° – 41°) + cosec (90° – 3°)
= tan 41° + sec 3°
Without using trigonometric tables, prove that (7 to 11):
Question 7.
(i) sin2 28° – cos2 62° = 0
(ii) cos2 25° + cos2 65° = 1
(iii) cosec2 67° – tan2 23° = 1
(iv) sec2 22° – cot2 68° = 1.
Answer:
(i) sin2 28° – cos2 62° = 0
LHS = sin2 28° – cos2 62°
= sin2 28° – cos2 (90° – 28°)
= sin2 28° – sin2 28°
= 0
= RHS
(ii) cos2 25° + cos2 65° = 1
LHS = cos2 25° + cos2 65°
= cos2 25° + cos2 (90° – 25°)
sin2 θ + cos2 θ = 1
= cos2 25° + sin2 25°
= 1
(iii) cosec2 67° – tan2 23° = 1
LHS = cosec2 67° – tan2 23°
= cosec2 67° – tan2 (90° – 67°)
cosec2 θ – cot2 θ = 1
= cosec2 67° – cot2 67°
= 1
(iv) sec2 22° – cot2 68° = 1
LHS = sec2 22° – cot2 68°
= sec2 22° – cot2 (90° – 22°)
sec2 θ – tan2 θ = 1
= sec2 22° – tan2 22°
= 1
Question 8.
(i) sin 63° cos 27° + cos 63° sin 27° = 1
(ii) sec 31° sin 59° + cos 31° cosec 59° = 2.
Answer :
(i) sin 63° cos 27° + cos 63° sin 27° = 1
LHS = sin 63° cos 27° + cos 63° sin 27°
= sin 63° cos (90° – 63°) + cos 63° sin (90° – 63°)
= sin 63° sin 63° + cos 63° cos 63°
sin2 θ + cos2 θ = 1
= sin2 63° + cos2 63°
= 1
(ii) sec 31° sin 59° + cos 31° cosec 59° = 2
LHS = sec 31° sin 59° + cos 31° cosec 59°
= 1/cos 31° × sin 59° + (cos 31° × 1/sin 59°)
= sin 59°/cos (90° – 59°) + cos 31°/sin (90° – 31°)
= sin 59°/sin 59° + cos 31°/cos 31°
= 1 + 1
= 2
= RHS
Question 9.
(i) sec 70° sin 20° – cos 20° cosec 70° = 0
(ii) sin2 20° + sin2 70° – tan2 45° = 0.
Answer :
(i) sec 70° sin 20° – cos 20° cosec 70° = 0
LHS = sec 70° sin 20° – cos 20° cosec 70°
= sin 20°/cos 70° – cos 20°/sin 70°
= sin 20°/cos (90° – 20°) – cos 20°/sin (90° – 20°)
= sin 20°/sin 20° – cos 20°/cos 20°
= 1 – 1
= 0
= RHS
(ii) sin2 20° + sin2 70° – tan2 45° = 0
LHS = sin2 20° + sin2 70° – tan2 45°
= sin2 20° + sin2 (90° – 20°) – tan2 45°
= sin2 20° + cos2 20° – tan2 45°
sin2 θ + cos2 θ = 1 and tan 45° = 1
= 1 – 1
= 0
= RHS
Question 10.
(i) cot 54°/tan 36° + tan 20°/cot 70° – 2 = 0
(ii) sin 50°/cos 40° + cosec 40°/sec 50° – 4 cos 50° cosec 40° + 2 = 0.
Answer :
(i) cot 54°/tan 36° + tan 20°/cot 70° – 2 = 0
LHS = cot 54°/tan 36° + tan 20°/cot 70° – 2
= cot 54°/tan (90° – 54°) + tan 20°/cot (90° – 20°) – 2
= cot 54°/ cot 54° + tan 20°/ tan 20° – 2
= 1 + 1 – 2
= 0
= RHS
(ii) sin 50°/cos 40° + cosec 40°/sec 50° – 4 cos 50° cosec 40° + 2 = 0
LHS = sin 50°/cos 40° + cosec 40°/sec 50° – 4 cos 50° cosec 40° + 2
= sin 50°/cos (90° – 50°) + cosec 40°/sec (90° – 40°) – 4 cos 50° cosec (90° – 50°) + 2
= sin 50°/sin 50° + cosec 40°/cosec 40° – cos 50° sec 50° + 2
= 1 + 1 – (4 cos50°/cos 50°) + 2
= 1 + 1 – 4 + 2
= 4 – 4
= 0
= RHS
Question 11.
(i) cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30° = 0
(ii) cos 80°/sin 10° + cos 59° cosec 31° = 2.
Answer :
(i) cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30° = 0
LHS = cos 70°/sin 20° + cos 59°/sin 31° – 8 sin2 30°
= cos 70°/sin (90° – 70°) + cos 59°/sin (90° – 59°) – 8 sin2 30°
sin 30° = ½
= cos 70°/cos 70° + cos 59°/ cos 59° – 8 (1/2)2
= 1 + 1 – (8 × ¼)
= 2 – 2
= 0
= RHS
(ii) cos 80°/sin 10° + cos 59° cosec 31° = 2
LHS = cos 80°/sin 10° + cos 59° cosec 31°
= cos 80°/sin (90° – 80°) + cos 59°/ sin 31°
= cos 80°/ cos 80° + cos 59°/ sin (90° – 59°)
= 1 + cos 59°/ cos 59°
= 1 + 1
= 2
= RHS
Trigonometrical Ratios of Standards Angles Exercise-18.2
ML Aggarwal Class 9 ICSE Maths Solutions
Page 437
Question 12. without using trigonometrical tables, evaluate:
(i)…………..
(ii)………….
(iii) sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°.
Answer :
(i)
= 2 + 1 – 3
= 0
(ii)
sin2 θ + cos2 θ = 1 and cosec2 θ – cot2 θ = 1
= 1/1
= 1
(iii) sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
= sin2 34° + [sin (90° – 34°)]2 + 2 tan 18° tan (90° – 18°) – cot2 30°
= sin2 34° + cos2 34° + 2 tan 18° cot 18° – (√3)2
= 1 + (2 tan 18°× 1/tan 18°) – 3
= 1 + 2 – 3
= 0
Question 13.
Prove the following:
……………………
Answer :
= cos θ/cos θ + sin θ/sin θ
= 1 + 1
= 2
= RHS
(ii) cos θ sin (90° – θ) + sin θ cos (90° – θ) = 1
LHS = cos θ sin (90° – θ) + sin θ cos (90° – θ)
= cos θ. cos θ + sin θ. sin θ
= cos2 θ + sin2 θ
= 1
= RHS
= tan θ/cot θ + cos θ/cos θ
= (tan θ × tan θ) + 1
= tan2 θ + 1
= sec2 θ
= RHS
Question 14. Prove the following:
……………………
Answer :
= sin A cos A/cot A
= (sin A cos A × sin A)/cos A
= sin2 A
= 1 – cos2 A
= RHS
= cos A/sec A + sin A/cosec A
= (cos A × cos A) + (sin A × sin A)
= cos2 A + sin2 A
= 1
= RHS
Question 15. Simplify the following:
…………………..
Answer :
(i) It can be written as
= cos θ/cos θ + sin θ/cosec θ – 3 tan2 300
= 1 + (sin θ × sin θ) – 3 (1/√3)2
= sin2 θ + 1 – (3 × 1/3)
= sin2 θ + 1 – 1
= sin2 θ
(ii) It can be written as
= (sec θ cos θ tan θ)/(sin θ cosec θ tan θ) + cot θ/cot θ
So we get
= sec θ cos θ/sin θ cosec θ + 1
= 1/1 + 1
= 1 + 1
= 2
Question 16.
Answer :
cos (90° – θ) = sin θ, tan (90° – θ) = cot θ and tan θ cot θ = 1
= 1/1
= 1
= RHS
Question 17. Find the value of A if
(i) sin 3A = cos (A – 6°), where 3A and A – 6° are acute angles
(ii) tan 2A = cot (A – 18°), where 2A and A – 18° are acute angles
(iii) If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A.
Answer :
(i) sin 3A = cos (A – 6°), where 3A and A – 6° are acute angles
sin 3A = cos (A – 6°)
cos (90° – θ) = sin θ
cos (90° – 3A) = cos (A – 6°)
90° – 3A = A – 6°
90° + 6° = A + 3A
⇒ 96° = 4A
A = 96°/4 = 24°
Hence, the value of A is 24°.
(ii) tan 2A = cot (A – 18°)
cot (90° – θ) = tan θ
cot (90° – 2A) = cot (A – 18°)
90° – 2A = A – 18°
90° + 18° = A + 2A
3A = 108°
⇒ A = 108°/3 = 36°
Hence, the value of A is 36°.
(iii) sec 2A = cosec (A – 27°)
cosec (90° – θ) = sec θ
cosec (90° – 2A) = cos (A – 27°)
90° – 2A = A – 27°
90° + 27° = A + 2A
3A = 117°
⇒ A = 117°/3 = 39°
Hence, the value of A is 39°.
Question 18. Find the value of θ (0° < θ < 90°) if:
(i) cos 63° sec (90° – θ) = 1
(ii) tan 35° cot (90° – θ) = 1.
Answer :
(i) cos 63° sec (90° – θ) = 1
cos 63° = 1/sec(90° – θ)
1/sec θ = cos θ
cos 63° = cos (90° – θ)
90° – θ = 63°
θ = 90° – 63° = 27°
(ii) tan 35° cot (90° – θ) = 1
tan 35° = 1/cot (90° – θ)
1/cot θ = cos θ
tan 35° = tan (90° – θ)
35° = 90° – θ
θ = 90° – 35°
= 55°
Question 19. If A, B and C are the interior angles of a △ ABC, show that
(i) cos (A + B)/2 = sin C/2
(ii) tan (C + A)/2 = cot B/2.
Answer :
A, B and C are the interior angles of a △ ABC
∠A + ∠B + ∠C = 180°
Dividing both sides by 2
(∠A + ∠B + ∠C)/2 = 180°/2
⇒ A/2 + B/2 + C/2 = 90°
(i) cos (A + B)/2 = sin C/2
(A + B)/2 = 90° – C/2
cos (90° – C/2) = sin C/2
Here, cos (90° – θ) = sin θ
sin C/2 = sin C/2
(ii) tan (C + A)/2 = cot B/2
(A + C)/2 = 90° – B/2
= tan (90° – B/2)
= cot B/2
= RHS
— : End of ML Aggarwal Trigonometrical Ratios of Standards Angles Exe-18.2 Class 9 ICSE Maths Solutions :–
Return to :- ML Aggarawal Maths Solutions for ICSE Class-9
Thanks
Please Share with Your Friends
Question 16 is wrongly solved.
we will look into matter