Indices Exponents Class 9 OP Malhotra Exe-6D ICSE Maths Solutions Ch-6. We Provide Step by Step Solutions / Answer of Questions on Indices Exponents OP Malhotra Maths. Visit official Website CISCE for detail information about ICSE Board Class-9 Mathematics.
Indices Exponents Class 9 OP Malhotra Exe-6D ICSE Maths Solutions Ch-6
Board | ICSE |
Publications | S Chand |
Subject | Maths |
Class | 9th |
Chapter-6 | Indices Exponents |
Writer | OP Malhotra |
Exe-6D | More complex Problems on Indices Exponents |
Edition | 2025-2026 |
Exercise- 6D
Indices Exponents Class 9 OP Malhotra ICSE Maths Solutions Ch-6
Que-1: 2x+1 = 4x-3
Sol: 2x+1 = 4x-3 ⇒ 2x +1 = (22)x-3
⇒ 2x+1 = 22x-6
Comparing both sides, we get
x + 1 = 2x – 6 ⇒ 2x – x = 1 + 6
⇒ x = 7
∴ x = 7
Que-2: x^(−3/4) = 1/8.
Sol: x^(−3/4) = 1/8 = 1/2³ = 2¯³
⇒ x^(1/4)×(-3) = 2¯³
⇒ (x^(1/4))¯³ = (2)¯³
Comparing,
⇒ x^(1/4) = 2
⇒ x = 2^4
⇒ x = 16
∴x = 16
Que-3: (x – 1)^(2/3) = 25
Sol: (x – 1)^(2/3) = 25 = 5²
(x – 1)^(2/3) = (5³)^(2/3)
∴ Comparing, we get
x – 1 = 5³
⇒ x – 1 = 125
⇒ x = 125 + 1 = 126
∴ x = 126
Que-4: 25x+3 = 8x + 3
Sol: 25x+3 = 8x + 3 = (2³)x+3
⇒ 25x+3 = 83x + 9
Comparing, we get
5x + 3 = 3x + 9
⇒ 5x – 3x = 9 – 3
⇒ 2x = 6
⇒ x = 6/2 = 3
x = 3.
Que-5: (√(5/7))^(x−1) = (125/343)^−1
Sol: (√(5/7))^(x−1) = (125/343)^−1
⇒ (5/7)^(x−1)/2 = (5³/7³)¯¹ = (5/7)¯³
Comparing both sides,
(x−1)/2 = – 3
⇒ x – 1 = – 6
⇒ x = – 6 + 1
⇒ x = – 5
∴ x = – 5
Que-6: 11^(3-4x) = (√(1/121))^−2
Sol: 11^(3-4x) = (√(1/121))^−2 = (√(1/11)²)^−2
⇒ 11^(3-4x) = 11{((−2)×(−2))/2}
⇒ 11^(3−4x) = 11²
Comparing, we get.
3 – 4x = 2
⇒ – 4x = 2 – 3 = – 1
⇒ – 4x = – 1
⇒ x = + 1/4
∴ x = 1/4
Que-7: Solve for x, (√4)^{2x+(1/2)} = 1/32.
Sol: (√4)^{2x+(1/2)} = 1/32
⇒ (√(2)²)^{2x+(1/2)} = 1/2^5
⇒ (2^(2/3))^{2x+(1/2)} = 2^-5
⇒ 2^(2/3){2x+(1/2)} = 2^-5
Comparing, we get
(2/3){(2x+(1/2))} = – 5
(4x/3) + (1/3) = – 5
⇒ 4x + 1 = – 15
⇒ 4x = – 15 – 1 = – 16
⇒ x = −16/4 = – 4
∴ x = – 4
Que-8: Find the value of x if √(p/q) = (q/p)^(1−2x)
Sol: √(p/q) = (q/p)^(1−2x)
= (p/q)^(1/2) = (p/q)^-(1-2x)
Comparing,
-(1-2x) = 1/2
2x-1 = 1/2
4x-2 = 1
4x = 3
x = 3/4.
Que-9: Solve for x, 2³ (5° + 32x) = 8*(8/27)
Sol: 2³ (5° + 32x) = 8*(8/27)
= 8(1+32x) = 224/7
= (1+32x) = (224/27) × (1/8) = 28/27
= 32x = (28/27) – 1
= 32x = (28-27)/27 = 1/27
= 32x = 1/3³ = 3¯³
Comparing we get,
2x = -3
x = -3/2
Que-10: Solve for x, √{(8^0)+(2/3)} = (0.6)^(2-3x).
Sol: √{(8^0)+(2/3)} = (0.6)^(2-3x)
= √{1 + (2/3)} = (6/10)^(2-3x)
= √(5/3) = (3/5)^(2-3x)
= (5/3)^(1/2) = (5/3)^-(2-3x)
Comparing we get.
-2+3x = 1/2
6x-4 = 1
6x = 5
x = 5/6
Solve the following equations for x
Que-11: 32x+ 4 + 1 = 2.3x+ 2.
Sol: 32x+ 4 + 1 = 2.3x+ 2
⇒ 32x.34 + 1 = 2.33x.3²
⇒ 81.32x + 1 = 18.3x
⇒ 81.32x – 18.3x + 1 = 0
⇒ Let 3x = a, then 32x = a²
∴ 81a² – 18a + 1 = 0
⇒ (9a)² – 2 x 9a + (1)² = 0
⇒ (9a – 1)² = 0
⇒ 9a – 1 = 0 ⇒ 9a = 1
⇒ 9.3x = 1 ⇒ 3x = 1/9 = 3-2
Comparing both sides,
∴ x = – 2
Que-12: 52x+1 = 6.5x – 1.
Sol: 52x+1 = 6.5x – 1.
⇒ 52x.51 – 6.5x + 1 = 0
⇒ 5.52x – 6.5x + 1 = 0
Let 5x = a, then 52x = a²
∴ 5a² – 6a + 1 = 0
⇒ 5a² – 5a – a + 1 = 0
⇒ 5a (a – 1) – 1 (a – 1) = 0
⇒ (a – 1) (5a – 1) = 0
Either a – 1 = 0, then a = 1
or 5a – 1 = 0 then 5a = 1 ⇒ a = 1/5
(i) If a = 1, then 5x = 1 = 5° (∵ 5° = 1)
∴ x = 0
(ii) If a = (1/5) then 5x = (1/5) = 5-1
∴ x = – 1
Hence x = 0 or x = – 1
Que-13: 22x – 2x+3 = – 24
Sol: 22x – 2x+3 = – 24
⇒ 22x – 2x.23 + 24 = 0
⇒ 22x – 8.2x + 16 = 0
Let 22x = a, then 22x = a²
a² – 8a + 16 = 0
⇒ (a)² – 2 x a x 4 + (4)² = 0
⇒ (a – 4)² = 0
⇒ a – 4 = 0 ⇒ a = 4
∴ 2x = 4 = 2²
Comparing we get, x = 2
Solve for x and y :
Que-14: 9x = 3y-2, 81y = 3² x (27)x
Sol: 9x = 3y-2, 81y = 3² x (27)x
[(3)²]x = (3)y-2 ⇒ 32x = 3y-2
Comparing,
2x = y – 2
⇒ y = 2x + 2 … (i)
81y = 3² x (27)x ⇒ (34)y = 3² x (3³)x
⇒ (34)y = 3² x 33x ⇒ 34y = 33x+2
∴ 4y = 3x + 2 … (ii)
From (i)
4 (2x + 2) = 3x + 2
8x + 8 = 3x + 2 ⇒ 8x – 3x = 2 – 8
⇒ 5x = – 6 ⇒ x = (-6/5)
∴ y = 2x + 2 = 2 x (−6/5) + 2
= −12/5 + 2 = (−12+10)/5 = −2/5
Hence x = −6/5 and y = −2/5
Que-15: 2^{1−(x/2)} = 4^y, (7^(1+x)) × (49)^−2y = 1
Sol: 2^{1−(x/2)} = 4^y, (7^(1+x)) × (49)^−2y = 1
∴ 1 – (x/2) = 2y
⇒ 2 – x = 4y
⇒ 4y + x = 2
⇒ x = 2 – 4y … (i)
and 71 + x x (49)-2y = 1
71+x x (7²)-2y = 7° (∵ 7° = 1)
⇒ 71 + x.7-4y = 7° ⇒ 71 + x-4y = 7°
∴ 1 + x – 4y = 0
⇒ 1 + (2 – 4y) – 4y = 0
From (i) x = 2 – 4y
⇒ 1 + 2 – 4y – 4y = 0
⇒ 3 – 8y = 0
⇒ 8y = 3
⇒ y = 3/8
∴ x = 2 – 4y = 2 – 4 x (3/8) = 2 – (3/2)
= (4−3)/2 = 1/2
Hence x = 1/2, y = 3/8
Que-16: 2x = 16 x 2y, (27)x = 9 x 32y
Sol: 2x = 16 x 2y ⇒ 2x = 24 x 2y
⇒ 2x = 24+y
Comparing, we get
∴ x = 4 + y … (i)
and (27)x = 9 x 32y ⇒ (3³)x = 3² x 32y
⇒ 33x = 32y+2
∴ 3x = 2y + 2
⇒ 3 (4 + y) = 2y + 2 [From (i)]
12 + 3y = 2v + 2 ⇒ 3y – 2y = 2 – 12
⇒ y = – 10
∴ x = 4 + 7 = 4 – 10 = – 6
Hence x = – 6, y = – 10
— : End of Indices Exponents Class 9 OP Malhotra Exe-6D ICSE Maths Solutions Ch-6 :–
Return to :– OP Malhotra S Chand Solutions for ICSE Class-9 Maths
Thanks
Please Share with Your Friends