ML Aggarwal Linear Inequation MCQs Class 10 ICSE Maths Solutions . We Provide Step by Step Answer of MCQs Questions for Linear Inequation as council prescribe guideline for upcoming board exam. Visit official Website CISCE for detail information about ICSE Board Class-10.
ML Aggarwal MCQs Linear Inequation Class 10 ICSE Maths Solutions
Board | ICSE |
Subject | Maths |
Class | 9th |
Chapter-4 | Linear Inequation |
Writer / Book | Understanding |
Topics | Solutions of MCQs |
Academic Session | 2024-2025 |
ML Aggarwal Linear Inequation MCQs Class 10 ICSE Maths Solutions
Question- 1 If x ∈ { – 3, – 1, 0, 1, 3, 5}, then the solution set of the inequation 3x – 2 ≤ 8 is
(a) { – 3, – 1, 1, 3}
(b) { – 3, – 1, 0, 1, 3}
(c) { – 3, – 2, – 1, 0, 1, 2, 3}
(d) { – 3, – 2, – 1, 0, 1, 2}
Answer -1
x ∈ { -3, -1, 0, 1, 3, 5}
3x – 2 ≤ 8
….⇒ 3x ≤ 8 + 2
and ⇒ 3x ≤ 10
so ⇒ x ≤ 10/3
therefore ⇒ x <3 1⁄3
Solution set = { -3, -1, 0, 1, 3} (b)
Question -2 If x ∈ W, then the solution set of the inequation 3x + 11 ≥ x + 8 is
(a) { – 2, – 1, 0, 1, 2, …}
(b) { – 1, 0, 1, 2, …}
(c) {0, 1, 2, 3, …}
(d) {x : x ∈ R, x≥-3⁄2}
Answer -2
x ∈ W
3x + 11 ≥ x + 8
⇒ 3x – x ≥ 8 – 11
⇒ 2x ≥ – 3
⇒ x ≥ -3⁄2
⇒ x ≥ -1.1/2
Solution set = {0, 1, 2, 3,…..}
Question -3 If x ∈ W, then the solution set of the inequation 5 – 4x ≤ 2 – 3x is
(a) {…, – 2, – 1, 0, 1, 2, 3}
(b) {1, 2, 3}
(c) {0, 1, 2, 3}
(d) {x : x ∈ R, x ≤ 3}
Answer -3
x ∈ W
5 – 4x < 2 – 3x
⇒ 5 – 2 ≤ 3x + 4x
⇒ 3 ≤ x
Solution set = {0, 1, 2, 3,} (c)
Question -4 If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
(a) { – 1, 0, 1, 2}
(b) { – 2, – 1, 0, 1}
(c) { – 1, 0, 1}
(d) {x : x ∈ R, -4⁄3 < x ≤ 2}
Answer- 4
x ∈ I
1 < 3x + 5 ≤ 11
⇒ 1 < 3x + 5
⇒ 1 – 5 < 3x
⇒ – 4 < 3x
⇒ -4/3 < x
And 3x + 5 ≤ 11 ⇒ 3x ≤ 11 – 5
⇒ 3x ≤ 6
⇒ x ≤ 6/3
⇒ x ≤ 2
∴ -4/3 < x ≤ 2
Solution set = {- 1, 0, 1, 2}
Question -5 If x ∈ R, the solution set of 6 ≤ – 3 (2x – 4) < 12 is
(a) {x : x ∈ R, 0 < x ≤ 1}
(b) {x : x ∈ R, 0 ≤ x < 1}
(c) {0, 1}
(d) none of these
Answer- 5
x ∈ R
6 ≤ – 3(2x – 4) < 12
⇒ 6 ≤ – 3(2x – 4)
⇒ 6 ≤ – 6x + 12
⇒ 6x ≤ 12 – 6
⇒ 6x ≤ 6
⇒ x ≤ 6/6
⇒ x ≤ 1
And -3(2x – 4) < 12
⇒ – 6x + 12 < 12
⇒ – 6x < 0
⇒ x < 0 ………(ii)
From (i) and (iii),
∴ 0 < x ≤ 1
Solution set = {x : x ∈ R, 0 < x ≤ 1}
— : End of ML Aggarwal Linear Inequation MCQs Class 10 ICSE Maths Solutions :–
Return to :- ML Aggarwal Solutions for ICSE Class-10
Thanks
Please Share with Your Friends