Sets Class 11 OP Malhotra Exe-1G ISC Maths Solutions

Sets Class 11 OP Malhotra Exe-1G ISC Maths Solutions Ch-1 Latest editions. In this article you would learn about Symmetric Difference of two Sets. Step by step solutions of latest textbook has been given as latest syllabus. Visit official Website CISCE  for detail information about ISC Board Class-11 Mathematics.

Sets Class 11 OP Malhotra Exe-1G ISC Maths Solutions

Sets Class 11 OP Malhotra Exe-1G ISC Maths Solutions Ch-1

Board ISC
Publications  S Chand
Subject Maths
Class 11th
Chapter-1 Sets
Writer OP Malhotra
Exe-1(G) Symmetric Difference of two Sets.

Exercise- 1G

Sets Class 11 OP Malhotra Exe-1G ISC Maths Solutions Ch-1 Latest editions.

Find A Δ B if
Que-1: A = {a, b, c, d}, B = {a, c, e, f}

Sol:  AΔB = (A−B)∪(B−A)
A-B = {b, d}
B-A = {e, f}
AΔB = (A−B)∪(B−A)
= {b, d}∪{e, f}
= {b, d, e, f}

Que-2: A = {5, 10, 15, 25}, B = {10, 25, 30, 40}

Sol:  AΔB = (A−B)∪(B−A)
A-B = {5, 15}
B-A = {30, 40}
AΔB = (A−B)∪(B−A)
= {5, 15}∪{30, 40}
= {5, 15, 30, 40}

Que-3: A = {letters of words ‘RIVER’}, B = {letters of word ‘WRITE’}

Sol:  AΔB = (A−B)∪(B−A)
A = {R, I, V, E}
B = {W, R, I, T, E}
A-B = {V}
B-A = {W, T}
AΔB = (A−B)∪(B−A)
= {V}∪{W, T}
= {V, W, T}

Que-4: A = {c, a, r}, B = {m, u, t, e}

Sol:  AΔB = (A−B)∪(B−A)
A-B = {c, a, r}
B-A = {m, u, t, e}
AΔB = (A−B)∪(B−A)
= {c, a, r}∪{m, u, t, e}
= {c, a, r, m, u, t, e}

Que-5: A = {x | x ∈ N, x ≤ 10}, B = {x | x is a prime number x < 6}

Sol:  AΔB = (A−B)∪(B−A)
A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
B = {2, 3, 5}
A-B = {1, 4, 6, 7, 8, 9, 10}
B-A = {}
AΔB = (A−B)∪(B−A)
= {1, 4, 6, 7, 8, 9, 10}∪{}
= {1, 4, 6, 7, 8, 9, 10}

Que-6: A = Φ, B = {5, 7, 9, 11}

Sol:  AΔB = (A−B)∪(B−A)
A-B = {Φ}
B-A = {5, 7, 9, 11}
AΔB = (A−B)∪(B−A)
= {Φ}∪{5, 7, 9, 11}
= {5, 7, 9, 11}

Que-7: If A = {3, 6, 8, 15, 19} and B = {1, 2, 6, 8, 14, 15}, then verify that AΔB = (A∪B) – (A∩B).

Sol:  Given sets are :
A = {3, 6, 8, 15, 19} and B = {1, 2, 6, 8, 14, 15}
Taking RHS
A∪B = {1, 2, 3, 6, 8, 14, 15, 19}
A∩B = {6, 8, 15}
(A∪B)−(A∩B)
= {1, 2, 3, 6, 8, 14, 15, 19} − {6, 8, 15}
= {1, 2, 3, 14, 19}
Taking LHS
AΔB = (A−B)∪(B−A)
A-B = {3, 19}
B-A = {1, 2, 14}
AΔB = (A−B)∪(B−A)
= {1, 2, 3, 14, 19}
LHS = RHS
AΔB = (A∪B) – (A∩B)
Hence Proved.

–: End Sets Class 11 OP Malhotra Exe-1G ISC Maths Ch-1 Latest editions :–

Return to :- OP Malhotra ISC Class-11 S Chand Publication Maths Solutions

Thanks

Please share with your friends

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

error: Content is protected !!