ML Aggarwal Trigonometric Identities Chapter Test Solutions ICSE Class-10 Maths Ch-18

ML Aggarwal Trigonometric Identities Chapter Test Solutions ICSE Class-10 Maths Ch-18. We Provide Step by Step Answer of Chapter Test Trigonometric Identities Questions for ICSE Class-10 APC Understanding Mathematics. Visit official Website CISCE for detail information about ICSE Board Class-10.

ML Aggarwal Trigonometric Identities Chapter Test Solutions ICSE Class-10 Maths Ch-18

Board ICSE
Subject Maths
Class 10th
Chapter-18 Trigonometric Identities
Writer / Book Understanding
Topics Solutions of Chapter Test
Academic Session 2024-2025

ML Aggarwal Trigonometric Identities Chapter Test Solutions

ICSE Class-10 Maths Ch-18

Question 1.

(i) If θ is an acute angle and cosec θ = √5 find the value of cot θ – cos θ.
(ii) If θ is an acute angle and tan θ = 8/15, find the value of sec θ + cosec θ.

Answer :

(i) θ is an acute angle.

cosec θ = √5

sin θ = 1/√5

And, cos θ = √(1 – sin2 θ)

cos θ = √(1 – (1/√5)2)

= √(1 – (1/5))

= √(4/5)

cos θ = 2/√5

Now, cot θ – cos θ = (cos θ/sin θ) – cos θ

ML aggarwal class-10 chapter 18 img 22

(ii) Given, θ is an acute angle and tan θ = 8/15

In fig. we have

tan θ = BC/AB = 8/15

So, BC = 8 and AB = 15

By Pythagoras theorem, we have

AC = √(AB2 + BC2) = √(52 + 82) = √(25 + 64) = √289

⇒ AC = 17

Now,

sec θ = AC/AB = 17/15

cosec θ = AC/BC = 17/8

So,

sec θ + cosec θ = 17/15 + 17/8

= (136 + 255)/ 120

= 391/120

= 3.31/120

Question 2. Evaluate the following:

(i) 2 × (cos20° cos70°)/(sin2 25° + sin2 65°) – tan 45° + tan 13° tan 23° tan 30° tan 67° tan 77°

(ii) (sin222° + sin268°)/(cos222° + cos268°) + sin263° + cos63° sin27°

Answer :

(i) 2 × (cos20° cos70°)/(sin2 25° + sin2 65°) – tan 45° + tan 13° tan 23° tan 30° tan 67° tan 77°
(ii) (sin222° + sin268°)/(cos222° + cos268°) + sin263° + cos63° sin27°

Question 3. If 4/3 (sec2 59° – cot2 31°) – 2/2 sin 90° + 3tan2 56° tan2 34° = x/2, then find the value of x.

Answer :

Given:

4/3 (sec2 59° – cot2 31°) – 2/2 sin 90° + 3tan2 56° tan2 34° = x/2

ML aggarwal class-10 chapter 18 img 23
Class-10 Trigonometric Identities ML Aggarwal img 26


ML Aggarwal Trigonometric Identities Chapter Test Solutions

ICSE Class-10 Maths Ch-11

Page-461

Prove the following (4 to 11) identities, where the angles involved are acute angles for which the trigonometric ratios are defined:

Question 4.

(i) cosA/(1-sinA)+cosA/(1+sinA)=2secA
(ii) cosA/(cosecA+1)+ cosA/(cosecA-1)=2tanA

Answer :

(i) cosA/(1-sinA)+cosA/(1+sinA)=2secA
L.H.S = cosA/(1-sinA)+cosA/(1+sinA)

ML aggarwal class-10 chapter 18 img 24
Class-10 Trigonometric Identities ML Aggarwal img 27

Question 5.

(i) sin2 θ + cos4 θ = cos2 θ + sin4 θ
(ii) cot θ/(cosec θ+1)+(cosec θ+1)/cot θ=2secθ

Answer :

(i) L.H.S. = sin2 θ + cos4 θ = cos2 θ + sin4 θ

L.H.S. = sin2 θ + cos4 θ

= (1 – cos2 θ) + cos4 θ

= cos4 θ – cos2 θ + 1

= cos2 θ (cos2 θ – 1) + 1

= cos2 θ (- sin2 θ) + 1

= 1 – sin2 θ cos2 θ

Now,

R.H.S. = cos2 θ + sin4 θ

= (1 – sin2 θ) + sin4 θ

= sin4 θ – sin2 θ + 1

= sin2 θ (sin2 θ – 1) + 1

= sin2 θ (-cos2 θ) + 1

= 1 – sin2 θ cos2 θ

Hence, L.H.S. = R.H.S.

(ii)

ML aggarwal class-10 chapter 18 img 25

Question 6.

(i) sec4 A (1 – sin4 A) – 2 tan2 A = 1
(ii) 1/(sinA+cosA+1)+1/(sinA+cosA-1) = secA+cosecA

Answer :

(i) sec4 A (1 – sin4 A) – 2 tan2 A = 1

L.H.S = sec4 A (1 – sin4 A) – 2 tan2 A
ML aggarwal class-10 chapter 18 img 26
Class-10 Trigonometric Identities ML Aggarwal img 29

Question 7.

(i) (sin³θ+cos³θ)/sinθcosθ=1
(ii) (sec A – tan A)2 (1 + sin A) = 1 – sin A.

Answer :

(i) (sin³θ+cos³θ)/sinθcosθ=1

L.H.S = (sin³θ+cos³θ)/sinθcosθ

ML aggarwal class-10 chapter 18 img 27
Class-10 Trigonometric Identities ML Aggarwal img 30

Question 8.

(i) cosA/(1-tanA)-sin²A/(cosA-sinA) = sinA+cosA

(ii) (sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A

(iii) tan²θ/(tan²θ-1)-cosec²θ/(sec²θ-cosec²θ) = 1/(sin²θ-cos²θ)

Answer :

(i) cosA/(1-tanA)-sin²A/(cosA-sinA) = sinA+cosA
L.H.S = cosA/(1-tanA)-sin²A/(cosA-sinA)
ML aggarwal class-10 chapter 18 img 29
Class-10 Trigonometric Identities ML Aggarwal img 31
ML aggarwal class-10 chapter 18 img 28
Class-10 Trigonometric Identities ML Aggarwal img 32

Question 9.

trigonometri class 10 img 1
Answer 9
trigonometri class 10 img 1
L.H.S
ML aggarwal class-10 chapter 18 img 30
Class-10 Trigonometric Identities ML Aggarwal img 33

Question 10. 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = θ

Answer :

2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = θ
L.H.S = 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1

= 2 [(sin2 θ)3 + (cos2 θ)3] – 3 (sin4 θ + cos4 θ) + 1

= 2 [(sin2 θ + cos2 θ) (sin4 θ + cos4 θ – sin2 θ cos2 θ)] – 3 (sin4 θ + cos4 θ) + 1

= 2 (sin4 θ + cos4 θ – sin2 θ cos2 θ) – 3 (sin4 θ + cos4 θ) + 1

= 2 sin4 θ + 2 cos4 θ – 2 sin2 θ cos2 θ – 3 sin4 θ – 3 cos4 θ + 1

= 1 – sin4 θ – cos4 θ – 2 sin2 θ cos2 θ

= 1 – (sin2 θ + cos2 θ)2 = 1 – 1 = 0

= R. H. S

Question 11. If cot θ + cos θ = m, cot θ – cos θ = n, then prove that (m2 – n2)2 = 16 mn.

Answer :

cot θ + cos θ = m…..(i)
cot θ – cos θ = n……(ii)
Adding (i)&(ii) we get
ML aggarwal class-10 chapter 18 img 31

Question 12. When 0° < θ < 90°, solve the following equations:

(i) 2 cos2 θ + sin θ – 2 = 0
(ii) 3 cos θ = 2 sin2 θ
(iii) sec2 θ – 2 tan θ = 0
(iv) tan2 θ = 3 (sec θ – 1).

Answer :

0° < θ < 90°
(i) 2 cos2 θ + sin θ – 2 = 0

⇒ 2 (1 – sin2 θ) + sin θ – 2 = 0

⇒ 2 – 2 sin2 θ + sin θ – 2 = 0

⇒ -2 sin2 θ + sin θ = 0

⇒ sin θ (1 – 2 sin θ) = 0

So, either sin θ = 0 or 1 – 2 sin θ = 0

If sin θ = 0

⇒ θ = 0o

And, if 1 – 2 sin θ = 0

sin θ = ½

⇒ θ = 30o

Thus, θ = 0o or 30o

(ii) 3 cos θ = 2 sin2 θ

⇒ 3 cos θ = 2 (1 – cos2 θ)

⇒ 3 cos θ = 2 – 2 cos2 θ

⇒ 2 cos2 θ + 3 cos θ – 2 = 0

⇒ 2 cos2 θ + 4 cos θ – cos θ – 2 = 0

⇒ 2 cos θ (cos θ + 2) – 1(cos θ + 2) = 0

⇒ (2 cos θ – 1) (cos θ + 2) = 0

So, either 2 cos θ – 1 = 0 or cos θ + 2 = 0

If 2 cos θ – 1 = 0

cos θ = ½

⇒ θ = 60o

And, for cos θ + 2 = 0

⇒ cos θ = -2 which is not possible being out of range.

Thus, θ = 60o

(iii) sec2 θ – 2 tan θ = 0

⇒ (1 + tan2 θ) – 2 tan θ = 0

⇒ tan2 θ – 2 tan θ + 1 = 0

⇒ (tan θ – 1)2 = 0

⇒ tan θ – 1 = 0

⇒ tan θ = 1

Thus, θ = 45o

(iv) tan2 θ = 3 (sec θ – 1)

⇒ (sec2 θ – 1) = 3 sec θ – 3

⇒ sec2 θ – 1 – 3 sec θ + 3 = 0

⇒ sec2 θ – 3 sec θ + 2 = 0

⇒ sec2 θ – 2 sec θ – sec θ + 2 = 0

⇒ sec θ (sec θ – 2) – 1 (sec θ = 2) = 0

⇒ (sec θ – 1) (sec θ – 2) = 0

So, either sec θ – 1 = 0 or sec θ – 2 = 0

If sec θ – 1 = 0

sec θ = 1

⇒ θ = 0o

And, if sec θ – 2 = 0

sec θ = 2

⇒ θ = 60o

Thus, θ = 0or 60o

—  : End of ML Aggarwal Trigonometric Identities Chapter Test Solutions ICSE Class-10 Maths Ch-18 : –

Return to :- ML Aggarwal Solutions for ICSE Class-10

Thanks

Please Share with Your Friends

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

error: Content is protected !!