Fundamental Concepts ICSE Class-7 Concise Selina mathematics Solutions Chapter-11. We provide step by step Solutions of Exercise / lesson-11 Fundamental Concepts ( Including Fundamental Operations ) for ICSE Class-7 Concise Selina Mathematics. Our Solutions contain all type Questions with Exe-11 A , Exe-11 B Exe-11 C , Exe-11 D , Exe-11 E and Exe-11 F to develop skill and confidence. Visit official Website CISCE for detail information about ICSE Board Class-7.
Fundamental Concepts ICSE Class-7 Concise Selina mathematics Solutions Chapter-11
–: Select Topics :–
Exercise – 11 A Fundamental Concepts ICSE Class-7 mathematics
Question 1.
Separate constant terms and variable terms from tile following :
Answer
Constant is only 8 other are variables.
Question 2.
Constant is only 8 others are variables
(i) 2x ÷ 15
(ii) ax+ 9
(iii) 3x2 × 5x
(iv) 5 + 2a-3b
(v) 2y – z÷x
(vi) 3p x q ÷ z
(vii) 12z ÷ 5x + 4
(viii) 12 – 5z – 4
(ix) a3 – 3ab2 x c
Answer
(i)
2x ÷ 15 = 2x/15
It is a monomial as it has one term.
(ii)
ax + 9: It is binomial
(∵ It has two terms)
(iii)
3x2 × 5x = 15x3 – It is monomial
(∵ It has one term)
(iv)
5 + 2a – 3b – It is trinomial
(∵ It has three terms)
(v)
2y –(7/3) z ÷ x = 2y – (7z/3x) – It is binomial
(∵ It has two terms)
(vi)
3p x q ÷ z – (3pq/z) – It is monomial
(∵ It has one terms)
(vii)
12z ÷ 5x + 4 = (12z/5x)+4 – It is binomial
(∵ It has two terms)
(viii)
12 – 5 z – 4 = 8 – 5 z – It is binomial
(∵ It has two terms)
(ix)
a3 – 3ab2 x c = a3 – 3ab2c – It is binomial
(∵ It has two terms)
Question 3.
Write the coefficient of:
(i) xy in – 3axy
(ii) z2 in p2yz2
(iii) mn in -mn
(iv) 15 in – 15p2
Answer
(i) Co-efficient of xy in – 3 axy = – 3a
(ii) Co-efficient of z2 in p2yz2 = p2y
(iii) Co-efficient of mn in – mn = – 1
(iv) Co-efficient of 15 in – 15p2 is -p2
Question 4.
For each of the following monomials, write its degree :
(i) 7y
(ii) – x2y
(iii) xy2z
(iv) – 9y2z3
(v) 3 m3n4
(vi) – 2p2q3r4
Answer
(i) Degree of 7y = 1
(ii) Degree of – x2y = 2 + 1 = 3
(iii) Degree of xy2z = 1 + 2 + 1 = 4
(iv) Degree of – 9y2z3 = 2 + 3 = 5
(v) Degree of 3m3n4 = 3 + 4 = 7
(vi) Degree of – 2p2q3r4 = 2 + 3 + 4 = 9
Question 5.
Write the degree of each of the following polynomials :
(i) 3y3-x2y2 + 4x
(ii) p3q2 – 6p2q5 + p4q4
(iii) – 8mn6+ 5m3n
(iv) 7 – 3x2y + y2
(v) 3x – 15
(vi) 2y2z + 9yz3
Answer
(i) The degree of 3y3 – x2y2+ 4x is 4 as x2
(ii) The degree of p3q2 – 6p2q5 – p4q4 is 8 as p4 q4 is the term which has highest degree.
(iii) The degree of – 8mn6 + 5m3n is 7 as – 8mx6 is the term that has the highest degree.
(iv) The degree of 7 – 3x2y + y2 is 3 as – 3x2y is the term which has the highest degree.
(v) The degree of 3x – 15 is 1 as 3x is the term which is highest degree.
(vi) The degree of 2y2z + 9yz3 is 4 as 9yz3 has the highest degree.
Question 6.
Group the like term together :
(i) 9x2, xy, – 3x2, x2 and – 2xy
(ii) ab, – a2b, – 3ab, 5a2b and – 8a2b
(iii) 7p, 8pq, – 5pq – 2p and 3p
Answer
(i) 9x2, – 3x2 and x2 are like terms xy and – 2xy are like terms.
(ii)
ab, – 3ab, are like terms,
– a2b, 5a2b, – 8a2b are like terms
(iii)
7p, – 2p and 3p are like terms,
8pq, – 5pq are like terms.
Question 7.
Write numerical co-efficient of each of the followings :
(i) y
(ii) -y
(iii) 2x2y
(iv) – 8xy3
(v) 3py2
(vi) – 9a2b3
Answer
(i) Co-efficient of y = 1
(ii) Co-efficient of-y = – 1
(iii) Co-efficient of 2x2y is = 2
(iv) Co-efficient of – 8xy3 is = – 8
(v) Co-efficient of 3py2 is = 3
(vi) Co-efficient of – 9a2b3 is = – 9
Question 8.
In -5x3y2z4; write the coefficient of:
(i) z2
(ii) y2
(iii) yz2
(iv) x3y
(v) -xy2
(vi) -5xy2z
Also, write the degree of the given algebraic expression.
Answer
(i)
-5x3y2z4
Co-efficient of z2 is -5x3y2z2
Degree of the given expression is 3 + 2 + 4 = 9
(ii)
-5x3y2z4
Co-efficient of y2 is -5x3z4
Degree of the given expression is 3 + 2 + 4 = 9
(iii)
-5x3y2z4
Co-efficient of yz2 is -5x3yz2
Degree of the given expression is 3 + 2 + 4 = 9
(iv)
-5x3y2z4
Co-efficient of x3y is -5yz4
Degree of the given expression is 3 + 2 + 4 = 9
(v)
-5x3y2z4
Co-efficient of -xy2 is 5x2z4
Degree of the given expression is 3 + 2 + 4 = 9
(vi)
-5x3y2z4
Co-efficient of -5xy2z is x2z3
Degree of the given expression is 3 + 2 + 4 = 9
Fundamental Concepts ICSE Class-7 Exe-11 B
Question 1.
Fill in the blanks :
(i) 8x + 5x = ………
(ii) 8x – 5x =……..
(iii) 6xy2 + 9xy2 =……..
(iv) 6xy2 – 9xy2 = ………
(v) The sum of 8a, 6a and 5b = ……..
(vi) The addition of 5, 7xy, 6 and 3xy = …………
(vii) 4a + 3b – 7a + 4b = ……….
(viii) – 15x + 13x + 8 = ………
(ix) 6x2y + 13xy2 – 4x2y + 2xy2 = ……..
(x) 16x2 – 9x2 = and 25xy2 – 17xy2=………
Answer
(i) 8x + 5x = 13x
(ii) 8x – 5x = 3x
(iii) 6xy2 + 9xy2 = 15xy2
(iv) 6xy2 – 9xy2 = -3xy2
(v)
The sum of 8a, 6a and 5b
= 8a + 6a + 5b = 14a + 5b
(vi)
The addition of 5, 7xy, 6 and 3xy
= 5 + 6 + 7xy + 3xy = 11 + 10 xy
(vii)
4a + 3b – 7a + 4b
= 4a – 7a + 3b + 4b = -3a + 7b = 7b – 3a
(viii) – 15x + 13x + 8 = – 2x + 8 = 8 – 2x
(ix)
6x2y + 13xy2 – 4x2y + 2xy2
= 6x2y – 4x2y + 13xy2 + 2xy2 = 2x2y + 15xy2
(x) 16x2 – 9x2 = 7x2 and 25xy2 – 17xy2 = 8xy2
Question 2.
Add :
(i)- 9x, 3x and 4x
(ii) 23y2, 8y2 and – 12y2
(iii) 18pq – 15pq and 3pq
Answer
(i)
– 9x, 3x and 4x
= – 9x + 7x = – 2x
(ii)
23y2 , 8y2 and – 12y2
= 31y2 – 12y2 = 19y2
(iii)
18pq – 15pq and 3pq
= 18pq + 3pq – 15pq = 21pq – 15pq = 6 pq
Question 3.
Simplify :
(i) 3m + 12m – 5m
(ii) 7n2 – 9n2 + 3n2
(iii) 25zy—8zy—6zy
(iv) -5ax2 + 7ax2 – 12ax2
(v) – 16am + 4mx + 4am – 15mx + 5am
Answer
(i)
3m + 12m – 5m
= 15m – 5m = 10m
(ii)
7n2 – 9n2 + 3n2
= 7n2 + 3n2 – 9n2
= 10n2 – 9n2 = n2
(iii)
25zy – 8zy – 6zy
= 25zy – 14zy = 11zy
(iv)
-5ax2 + 7ax2 – 12ax2
= – 5ax2 – 12ax2 + 7ax2
= – 17ax2 + 7ax2 = – 10ax2
(v)
– 16am + 4mx + 4am – 15mx + 5am
= – 16am + 4am + 5am + 4mx – 15mx
= – 16am + 9am + 4mx – 15mx
= – 7 am – 11 mx
Question 4.
Add :
(i) a + i and 2a + 3b
(ii) 2x + y and 3x – 4y
(iii)- 3a + 2b and 3a + b
(iv) 4 + x, 5 – 2x and 6x
Answer
(i)
a + b and 2a + 3b
= a + b + 2a + 3b
= a + 2a + b + 3b = 3a + 4b
(ii)
2x + y and 3x – 4y
= 2x + 3x + y – 4y
= 5x – 3y
(iii)
– 3a + 2b and 3a + b
= – 3a + 3a + 2b + b
= 0 + 3b = 3b
(iv)
4 + x, 5 – 2x and 6x
= x – 2x + 6x + 4 + 5
= 7x – 2x + 9
= 5x + 9
Question 5.
Find the sum of:
(i) 3x + 8y + 7z, 6y + 4z- 2x and 3y – 4x + 6z
(ii) 3a + 5b + 2c, 2a + 3b-c and a + b + c.
(iii) 4x2+ 8xy – 2y2 and 8xy – 5y2 + x2
(iv) 9x2 – 6x + 7, 5 – 4x and 6 – 3x2
(v) 5x2 – 2xy + 3y2 and – 2x2 + 5xy + 9y2
and 3x2 -xy- 4y2
(vi) a2 + b2 + 2ab, 2b2 + c2 + 2bc
and 4c2-a2 + 2ac
(vii) 9ax – 6bx + 8, 4ax + 8bx – 7
and – 6ax – 46x – 3
(viii) abc + 2 ba + 3 ac, 4ca – 4ab + 2 bca
and 2ab – 3abc – 6ac
(ix) 4a2 + 5b2 – 6ab, 3ab, 6a2 – 2b2
and 4b2 – 5 ab
(x) x2 + x – 2, 2x – 3x2 + 5 and 2x2 – 5x + 7
(xi) 4x3 + 2x2 – x + 1, 2x3 – 5x2– 3x + 6, x2 + 8 and 5x3 – 7x
Answer
(i)
3x + 8y + 7z; 6y + 4z- 2x and 3y – 4x + 6z
3x + 8y + 7z + 6y + 4z – 2x + 3y – 4x + 6z
= 3x – 6x + 17y + 17z
= – 3x + 17y + 17z
(ii)
3a + 5b + 2c, 2a + 3b-c and a + b + c.
3a + 5b + 2c + 2a + 3b – c + a + b + c.
= 6a + 9b + 3c – c
= 6a + 9b + 2c
(iii)
4x2+ 8xy – 2y2 and 8xy – 5y2 + x2
4x2+ 8xy – 2y2 + 8xy – 5y2 + x2
= 4x2 + x2 + 8xy + 8xy – 2y2 – 5y2
= 5x2 + 16xy – 7y2
(iv)
9x2 – 6x + 7, 5 – 4x and 6 – 3x2
9x2 – 6x + 7 + 5 – 4x + 6 – 3x2
= 9x2 – 3x2 – 6x – 4x + 7 + 5 + 6
= 6x2 – 10x + 18
(v)
5x2 – 2xy + 3y2 and – 2x2 + 5xy + 9y2 and 3x2 -xy- 4y2
5x2 – 2xy + 3y2 + – 2x2 + 5xy + 9y2 + 3x2 -xy- 4y2
= 5x2 – 2x2 + 3x2 – 2xy + 5xy – xy + 3y2 + 9y2 – 4y2
= 8x2 – 2x2 + 5xy – 3xy + 12y2 – 4y2
=6x2 + 2xy + 8y2
(vi)
a2 + b2 + 2ab, 2b2 + c2 + 2bc and 4c2 -a2 + 2ac
a2 + b2 + 2ab + 2b2 + c2 + 2bc + 4c2 -a2 + 2ac
= a2 – a2 + b2 + 2b2 + c2 + 4c2 + 2ab + 2bc + 2ac
= 3b2 + 5c2 + 2ab + 2bc + 2ac
(vii)
9ax – 6bx + 8, 4ax + 8bx – 7 and – 6ax – 46x – 3
9ax – 6bx + 8 + 4ax + 8bx – 7 – 6ax – 46x – 3
= 9ax + 4ax – 6ax – 6bx + 8bx – 4bx + 8 – 7 – 3
= 13ax – 6ax + 8bx – 10bx + 8 – 10
= 7ax – 2bx – 2
(viii)
abc + 2 ba + 3 ac, 4ca – 4ab + 2 bca and 2ab – 3abc – 6ac
abc + 2 ba + 3 ac + 4ca – 4ab + 2 bca + 2ab – 3abc – 6ac
= abc + 2abc – 3abc + 2ab – 4ab + 2ab + 3ca + 4ca – 6ca
= 3abc – 3abc + 4ab – 4ab + 7ca – 6ca
= 0 + 0 + ca = ca
(ix)
4a2 + 5b2 – 6ab, 3ab, 6a2 – 2b2 and 4b2 – 5 ab
4a2 + 5b2 – 6ab + 3ab, 6a2 – 2b2 + 4b2 – 5 ab
= 4a2 + 6a2 + 5b2 – 2b2 + 4b2 – 6ab + 3ab – 5ab
= 10a2 + 9b2 – 2b2 – 11ab + 3ab
= 10a2 + 7b2 – 8ab
(x)
x2 + x – 2, 2x – 3x2 + 5 and 2x2 – 5x + 7
= x2 + x – 2 + 2x – 3x2 + 5 + 2x2 – 5x + 7
= x2 – 3x2 + 2x2 + x + 2x – 5x – 2 + 5 + 7
= 3x2 – 3x2 + 3x – 5x – 2 + 12
= 0 – 2x + 10
= – 2x + 10
(xi)
4x3 + 2x2 – x + 1, 2x3 – 5x2 – 3x + 6, x2 + 8 and 5x3 – 7x
4x3 + 2x2 – x + 1 + 2x3 – 5x2 – 3x + 6 + x2 + 8 + 5x3 – 7x
= 4x3 + 2x3 + 5x3 + 2x2 – 5x2 + x2 – x – 3x – 7x + 1 + 6 + 8
= 11x3 + 3x2 – 5x2 – 11x + 15
= 11x3 – 2x2 – 11x + 15
Question 6.
Find the sum of:
(i) x and 3y
(ii) -2a and +5
(iii) – 4x2 and +7x
(iv) +4a and -7b
(v) x3+3x2y and 2y2
(vi) 11 and -by
Answer
(i) x + 3y
(ii) -2a + 5
(iii) – 4x2 + 7x
(iv) + 4a and -7b = 4a – 7b
(v) x3+3x2y and 2y2 = x3+ 3x2y + 2y2
(vi) 11 and -by = 11 – by
Question 7.
The sides of a triangle are 2x + 3y, x + 5y and 7x – 2y, find its perimeter.
Answer
Sides of a triangle are 2x + 3y, x + 5y, 7x – 2y
∴ Perimeter = sum of three sides of the triangle
= 2x + 3y + x + 5y + 7x – 2y
= 2x + x + 7x + 3y + 5y – 2y
= 10x + 8y – 2x
= 10x + 6y
Question 8.
The two adjacent sides of a rectangle are 6a + 96 and 8a – 46. Find its, perimeter.
Answer
Sides of a rectangle are 6a + 9b
and 8a – 4b
Let, length = 6a + 9b
and breadth = 8a – 4b
∴ Perimeter = 2 (l + b)
= 2 (6a + 9b + 8a – 4b)
= 2 (14 a + 5 b)
= 28a + 10b
Question 9.
Subtract the second expression from the first:
(i) 2a + b, a + b
(ii) – 2b + 2c, b + 3c
(iii) 5a + b, – 6b + 2a
(iv) a3 – 1 + a, 3a – 2a2
(v) p + 2, 1
(vi) x + 2y + z, – x – y – 3z
(vii) 3a2 – 8ab – 2b2 , 3a2 – 4ab + 6b2
(viii) 4pq – 6p2 – 2q2 , 9p2
(ix) 10abc, 2a2 + 2abc – 4b2
(x) a2 + ab + c2, a2 – d2
Answer
(i)
(2a + b) – (a + b)
= 2a + b – a – b
= 2a – a + b – b
= a + 0 = a
(ii)
(- 2b + 2c) + (b + 3c)
= – 2b + 2c – b – 3c
= – 2b – b + 2c – 3c
= – 3b – c
(iii)
(5a + b) – (- 6b + 2a)
= 5a + b + 6b – 2a
= 5a – 2a + b + 6b
= 3a + 7b
(iv)
(a3 – 1 + a) – (3a – 2a2)
= a3 – 1 + a – 3a + 2a2
= a3 + 2a2 – 2a – 1
(v) (p + 2) – 1 = p + 2 – 1 = p + 1
(vi)
(x + 2y + z) – (- x – y – 3z)
= x + 2y + z + x + y+ 3z
= x + x + 2y + y + z + 3z
= 2x + 3y + 4z
(vii)
(3a2 – 8ab – 2b2) – (3a2 – 4ab + 6b2 )
= 3a2 – 8ab – 2b2 – 3a2 + 4ab – 6b2
= 3a2 – 3a2 – 2b2 – 6b2 – 8ab + 4ab
= 0 – 8b2 – 4ab
= – 4ab – 8b2
(viii)
(4pq – 6p2 – 2q2) – (9p2)
= 4pq – 6p2 – 2q2 – 9p2
= 4pq – 15p2 – 2q2
(ix)
10abc – (2a2 + 2abc – 4b2 )
= 10 abc – 2a2 – 2abc + 4b2
= 10 abc – 2 abc – 2a2 + 4b2
= 8abc – 2a2 + 4b2
(x)
(a2 + ab + c2) – (a2 – d2 )
= a2 + ab + c2 – a2 + d2
= a2 – a2 + ab + c2 + d2
= ab + c2 + d2
Question 10.
Subtract:
(i) 4x from 8 – x
(ii) – 8c from c + 3d
(iii) – 5a – 2b from b + 6c
(iv) 4p + p2 from 3p2 – 8p
(v) 5a – 3b + 2c from 4a – b – 2c
(vi) – xy + yz – zx from xy – yz – xz
(vii) 2x2 – 7xy – y2 from 3x2 – 5xy + 3y2
(viii) a2 – 3ab – 6b2 from 2b2 – a2 + 2ab
(ix) 4x2 – 5x2y + y2 from – 3y2 + 5xy2 – 7x2 – 9x2y
(x) 6m3 + 4m2 + 7m – 3 from 3m3 + 4
Answer
(i)
4x from 8 – x
= (8 – x) – 4x
= 8 – x – 4x
= 8 – 5x
(ii)
– 8c from c + 3d
= (c + 3d) – (- 8c)
= c + 3d + 8c
= 9c + 3d
(iii)
– 5a – 2b from b + 6c
= (b + 6c) – (- 5a – 2b)
= b + 6c + 5a + 2b
= 5a + 3b + 6c
(iv)
4p + p2 from 3p2 – 8p
= (3p2 – 8p) – (4p + p2)
= 3p2 – 8p – 4p – p2
= 2p2 – 12p
(v)
5a – 3b + 2c from 4a – b – 2c
= (4a – b – 2c) – (5a – 3b + 2c)
= 4a – b – 2c – 5a + 3b – 2c
= 4a – 5a – b + 3b – 2c – 2c
= – a + 2b – 4c
(vi)
– xy + yz – zx from xy – yz – xz
= (xy – yz – xz) – (- xy + yz – xz)
= xy – yz + zx + xy – yz + xz
= xy + xy – yz – yz + zx + xz
= xy + xy – yz – yz + zx + xz
= 2(xy – yz + zx)
(vii)
2x2 – 7xy – y2 from 3x2 – 5xy + 3y2
= (3x2 – 5xy + 3y2) – (2x2 – 7xy – y2)
= 3x2 – 5xy + 3y2 – 2x2 + 7xy + y2
= 3x2 – 2x2 – 5xy + 7xy + 3y2 + y2
= x2 + 2xy + 4y2
(viii)
a2 – 3ab – 6b2 from 2b2 – a2 + 2ab
= (2b2 – a2 + 2ab) – (a2 – 3ab – 6b2)
= 2b2 – a2 + 2ab – a2 + 3ab + 6b2
= – a2 + a2 + 2b2 + 6b2 + 2ab + 3ab
= – 2a2 + 8b2 + 5ab
= 8b2 + 5ab – 2a2
(ix)
4x2 – 5x2y + y2 from – 3y2 + 5xy2 – 7x2 – 9x2y
= (- 3y2 + 5xy2 – 7x2 – 9x2y) – (4x2 – 5x2y + y2)
= – 3y2 + 5xy2 – 7x2 – 9x2y – 4x2 + 5x2y – y2
= – 3y2 – y2 + 5xy2 – 7×2 – 4x2 – 9x2y + 5x2y
= – 4y2 + 5xy2 – 11x2 – 4x2y
(x)
6m3 + 4m2 + 7m – 3 from 3m3 + 4
= (3m3 + 4) – (6m3 + 4m2 + 7m – 3)
= 3m3 + 4 – 6m3 + 4m2 + 7m – 3
= 3m3 – 6m3 – 4m2 – 7m + 4 + 3
= – 3m3 – 4m2 – 7m + 7
Question 11.
Subtract – 5a2 – 3a + 1 from the sum of 4a2 + 3 – 8a and 9a – 7.
Answer
sum of 4a2 + 3 – 8a and 9a – 7
= 4a2 + 3 – 8a + 9a – 7 = 4a2 + a – 4
∴ (4a2 + a – 4) – (- 5a2 – 3a + 1)
= 4a2 + a – 4 + 5a2 + 3a – 1
= 4a2 + 5a2 + a + 3a – 4 – 1
= 9a2 + 4a – 5
Question 12.
By how much does 8x3 – 6x2 + 9x – 10 exceed 4x3 + 2x2 + 7x -3 ?
Answer
8x3 – 6x2 + 9x – 10 exceeds 4x3 + 2x2 + 7x -3
= (8x3 – 6x2 + 9x – 10) – (4x3 + 2x2 + 7x – 3)
= 8x3 – 6x2 + 9x – 10 – 4x3 + 2x2 + 7x – 3
= 8x3 – 4x3 – 6x2 – 2x2 + 9x – 7x – 10 + 3
= 4x3 – 8x2 + 2x – 7
Question 13.
What must be added to 2a3 + 5a – a2 – 6 to get a2 – a – a3 + 1 ?
Answer
We get, the required result by subtracting
2a3 + 5a – a2 – 6 from – a3 + a2 – a + 1
= (- a3 + a2 – a + 1) – (2a3 – a2 + 5a – 6)
= – a3 + a2 – a + 1 – 2a3 + a2 – 5a + 6
= – a3 – 2a3 + a2 + a2 – a – 5a + 1 + 6
= – 3a3 + 2a2 – 6a + 7
Question 14.
What must be subtracted from a2 + b2 + lab to get – 4ab + 2b2 ?
Answer
We get, the required result by subtracting
– 4ab + 2b2 from a2 + b2 + 2ab
= a2 + b2 + 2ab – (- 4ab + 2b2)
= a2 + b2 + 2ab + 4ab – 2b2
= a2 + b2 – 2b2 + 2ab + 4ab
= a2 – b2 + 6ab
Question 15.
Find the excess of 4m2 + 4n2 + 4p2 over m2+ 3n2 – 5p2
Answer
The required result will be by substracting
m2+ 3n2 – 5p2 from 4m2 + 4n2 + 4p2
= 4m2 + 4n2 + 4p2 – (m2 + 3n2 – 5p2)
= 4m2 + 4n2 + 4p2 – m2 – 3n2 – 5p2
= 4m2 – m2 + 4n2 – 3n2 + 4p2 + 5p2
= 3m2 + n2 + 9p2
Question 16.
By how much is 3x3 – 2x2y + xy2 -y3 less than 4x3 – 3x2y – 7xy2 +2y3
Answer
We can get the required results by substracting
3x3 – 2x2y + xy2 -y3 from 4x3 – 3x2y – 7xy2 +2y3
= (4x3 – 3x2y – 7xy2 +2y3 ) – (3x3 – 2x2y + xy2 -y3)
= 4x3 – 3x2y – 7xy2 +2y3 – 3x3 + 2x2y – xy2 + y3
= 4x3 – 3x3 – 3x2y + 2x2y – 7xy2 – xy2 +2y3 + y3
= x3 – x2y – 8xy2 + 3y3
Question 17.
Subtract the sum of 3a2 – 2a + 5 and a2 – 5a – 7 from the sum of 5a2 -9a + 3 and 2a – a2 – 1
Answer
Sum of 3a2 – 2a + 5 and a2 – 5a – 7
= 3a2 – 2a + 5 + a2 – 5a – 7
= 3a2 + a2 – 2a – 5a + 5 – 7
= 4a2 – 7a – 2
and sum of 5a2 -9a + 3 and 2a – a2 – 1
= 5a2 – 9a + 3 + 2a – a2 – 1
= 5a2 – a2 – 9a + 2a + 3 – 1
= 4a2 – 7a + 2
Now (4a2 – 7a + 2) – (4a2 – 7a – 2)
= 4a2 – 7a + 2 – 4a2 + 7a + 2
= 4a2 – 4a2 – 7a + 7a + 2 + 2
= 0 + 0 + 4 = 4
Question 18.
The perimeter of a rectangle is 28x3+ 16x2 + 8x + 4. One of its sides is 8x2 + 4x. Find the other side
Answer
Perimeter of a rectangle (2l + 2b)
= 28x3 + 16x2 + 8x + 4
Let one side (l) = 8x2 + 4x
∴ 2l = 2 (8x2 + 4x) = 16x2 + 8x
∴ 2b = (28x3 + 16x2 + 8x + 4) – (16x2 + 8x)
= 28x3 + 16x2 + 8x + 4 – 16x2 – 8x
= 28x3 + 4
∴ Other side (b) = (28x3+4)/2
=14×3+2
Question 19.
The perimeter of a triangle is 14a2 + 20a + 13. Two of its sides are 3a2 + 5a + 1 and a2 + 10a – 6. Find its third side.
Answer
perimeter of a triangle = 14a2 + 20a + 13
Sum of two sides
= 3a2 + 5a + 1 + a2 + 10a – 6
= 3a2 + a2 + 5a + 10a + 1 – 6
= 4a2 + 15a – 5
∴ Third side = (14a2 + 20a + 13) – (4a2 + 15a – 5)
= 14a2 + 20a + 13 – 4a2 – 15a + 5
= 14a2 – 4a2 + 20a – 15a + 13 + 5
= 10a2 + 5a + 18
Question 20.
(i) If x = 4a2 + b2 – 6ab; y = 3b2 – 2a2 + 8ab and z = 6a2 + 8b2 – 6ab
find: x + y + z
(ii) If x = 4a2 + b2 – 6ab; y = 3b2 – 2a2 + 8ab and z = 6a2 + 8b2 – 6ab
find: x – y – z
Answer
(i)
x = 4a2 + b2 – 6ab
y = 3b2 – 2a2 + 8ab
z = 6a2 + 8b2 – 6ab
x + y + z
= 4a2 + b2 – 6ab + 3b2 – 2a2 + 8ab + 6a2 + 8b2 – 6ab
= 4a2 – 2a2 + 6a2 + b2 + 3b2 + 8b2 – 6ab + 8ab – 6ab
= 10a2 – 2a2 + 12b2 – 12ab + 8ab
= 8a2 + 12b2 – 4ab
(ii)
x = 4a2 + b2 – 6ab
y = 3b2 – 2a2 + 8ab
z = 6a2 + 8b2 – 6ab
x – y – z
= (4a2 + b2 – 6ab) – (3b2 – 2a2 + 8ab) – (6a2 + 8b2 – 6ab)
= 4a2 + b2 – 6ab – 3b2 + 2a2 – 8ab – 6a2 – 8b2 + 6ab
= 4a2 – 2a2 – 6a2 + b2 – 3b2 – 8b2 – 6ab – 8ab + 6ab
= 6a2 – 6a2 + b2 – 11b2 – 14ab + 6ab
= – 10b2 – 8ab
Question 21.
Answer
(i)
m = 9x2 – 4xy + 5y2
n = – 3x2 + 2xy – y2
∴ 2m – n
= 2 (9x2 – 4xy + 5y2) – (- 3x2 + 2xy – y2)
= 18x2 – 8xy + 10y2 + 3x2 – 2xy + y2
= 18x2 + 3x2 – 8xy – 2xy + 10y2 + y2
= 21x2 – 10xy + 11y2
(ii)
m = 9x2 – 4xy + 5y2
n = – 3x2 + 2xy – y2
∴ m + 2n
= (9x2 – 4xy + 5y2) + 2 (- 3x2 + 2xy – y2)
= 9x2 – 4xy + 5y2 – 6x2 + 4xy – 2y2
= 9x2 – 6x2 – 4xy + 4xy + 5y2 – 2y2
= 3x2 + 3y2
(iii)
m = 9x2 – 4xy + 5y2
n = – 3x2 + 2xy – y2
∴ m – 3n
= (9x2 – 4xy + 5y2) – 3 (- 3x2 + 2xy – y2)
= 9x2 – 4xy + 5y2 + 9x2 – 6xy + 3y2
= 18x2 – 10xy + 8y2
Question 22.
Simplify:
Answer
(i)
3x + 5(2x + 6) – 7x
⇒ 3x + 10x + 30 – 7x
⇒ 3x + 10x – 7x + 30
⇒ 13x – 7x + 30
⇒ 6x + 30
(ii)
3(4y – 10) 2(y – 1)
⇒ 12y – 30 + 2y – 2
⇒ 12y + 2y – 30 – 2
⇒ 14y – 32
(iii)
– (7 + 6x) – 7(x + 2)
⇒ – 7 – 6x – 7x – 14
⇒ – 7x – 6x – 7 – 14
⇒ -13 x – 21
(iv)
x – (x – y) – y – (y – x)
⇒ x – x + y – y – y + x
⇒ 2x – x – 2y + y
⇒ x – y
(v)
4x + 7y – (5y – 8) – 2x
⇒ 4x + 7y – 5y + 8 – 2x
⇒ 4x – 2x + 7y – 5y + 8
⇒ 2x + 2y + 8
(vi)
– 2m + 5 + 4(m – 3)
⇒ – 2m + 5 + 4m – 12
⇒ – 2m + 4m + 5 – 12
⇒ 2m – 7
(vii)
2x – y + 5 – (x – y)
⇒ 2x – y + 5 – (x – y)
⇒ 2x – x + 5
⇒ x + 5
(viii)
2(x – y) – (x – 8)
⇒ 2x – 2y – x + 8
⇒ 2x – x – 2y + 8
⇒ x – 2y + 8
(ix)
4(3x – 8) – 3(5x + 3) – 2(6x – 8)
⇒ 12x – 32 – 15x – 9 – 12x + 16
⇒ 12x – 15x – 12x – 32 – 9 + 16
⇒ 12x – 27x – 41 + 16
⇒ – 15 x – 25
(x)
5(x – 4) – 3(x – 4) + 7(x – 4)
⇒ 5x – 20 – 3x + 12 + 7x – 28
⇒ 5x + 7x – 3x + 12 + 7x – 28
⇒ 12x – 3x – 48 + 12
⇒ 9x – 36
Exe – 11 C Soved Questions of Fundamental Concepts for ICSE Class-7
Question 1.
Multiply:
Answer
(i)
Product of 3x, 5x2y and 2y
= 3x + 5x2y × 2y
= 3 × 5 × 2 × x × x2 × y × y
= 30x3y2
(ii)
Product of 5, 3a and 2ab2
= 5 × 3a × 2ab2
= 5 × 3 × 2 × a × ab2
= 30a2b2
(iii)
Product of 5x + 2y and 3xy
= 3xy (5x + 2y)
= 3xy × 5x + 3xy × 2y
= 15x2y + 6xy2
(iv)
Product of 6a – 5b and – 2a
= -2a (6a – 5b)
= – 2a × 6a + (- 2a) × (- 5b)
= – 12a2 + 10ab
(v)
Product of 4a + 5b and 4a – 5b
= 16a2 – 25b2
4a + 5b
(vi)
Product of 9xy + 2y2 and 2x – 3y
= 18x2y – 23xy2 – 6y3
9xy + 2y2
(vii)
Product of – 3m2n + 5mn – 4mn2 and 6m2n
= 6m2n (- 3m2n + 5mn – 4mn2 )
= 6m2n × (- 3m2n) + 6m2n × 5mn + 6m2n × (- 4mn2)
= 18m4n2 + 30m3n2 – 24 m3n3
(viii)
Product of 6xy2 – 7x2y2 + 10x3 and – 3x2y3
= – 3x2y3 (6xy2 – 7x2y2 + 10x3)
= – 3x2y3 × 6xy2 + (- 3x2y3) × (- 7x2y2 ) + (- 3x2y3) × 10x3
= – 18x3y5 + 21x4y5 – 30x5y3
Question 2.
Copy and complete the following multi-plications :
Answer
(i)
3a + 2b
× – 3xy
– 9axy – 6bxy
(ii)
9x + 5y
× – 3xy
– 27x2y + 15xy2
(iii)
3xy – 2x2 – 6x
× -5x2y
-15x3y2 + 10x4y + 30x3y
(iv)
a + b
× a + b
a2 + ab
ab + b2
a2 + 2ab + b2
(v)
ax – b
× 2ax + 2b2
2a2x2 – 2abx + 2ab2x – 2b3
(vi)
2a – b + 3c
× 2a – 4b
4a2 – 2ab + 6ac
– 8ab + 4b2 – 12bc
4a2 – 10ab + 6ac + 4b2 – 12bc
(vii)
3m2 + 6m – 2n
× 5n – 3m
15m2n + 30mn – 10n2 – 9m3 – 18m2
+ 6mn
15m2n + 36mn – 10n2 – 9m3 – 18m2
(viii)
6 – 3x + 2x2
× 1 + 5x – x2
6 – 3x + 2x2
+ 30x – 15x2 + 10x3
– 6x2 + 3x3 – 2x4
6 + 27x – 19x2 + 13x3 – 2x4
(ix)
4x3 – 10x2 + 6x – 8
× 3 + 2x – x2
12x3 – 30x2 + 18x – 24
8x4 – 20x3 + 12x2 – 16x
4x5 + 10x4 – 6x3 + 8x2
4x5 + 18x4 – 14x3 – 10x2 + 2x – 24
Question 3.
Evaluate :
Answer
(i)
(c + 5)(c – 3) = c (c – 3) +5 (c – 3)
= c2 – 3c + 5c – 15
= c2 + 2c – 15
(ii)
(3c – 5d)(4c – 6d)
= 3c (4c – 6d) – 5d(4c – 6d)
= 12c2 – 18cd – 20cd + 30d2
= 12c2 – 38cd + 30d2
(iii)
(iv)
(a2 + 2ab + b2)(a + b)
= a(a2 + 2ab + b2) + b(a2 + 2ab + b2)
= a3 + 2a2b + ab2 + a2b + 2ab2 + b3
= a3 + 3a2b + 3ab2 + b3
(v)
(3x – 1)(4x3 – 2x2 + 6x – 3)
= 3x (4x3 – 2x2 + 6x – 3) – 1 (4x3 – 2x2 + 6x – 3)
= 12x4 – 6x3 + 18x2 – 9x – 4x3 + 2x2 – 6x + 3
= 12x4 – 6x3 – 4x3 + 18x2 + 2x2 – 9x – 6x + 3
= 12x4 – 10x3 + 20x2 – 15x + 3
(vi)
(4m – 2)(m2 + 5m – 6)
= 4m (m2 + 5m – 6) – 2(m2 + 5m – 6)
= 4m3 + 20m2 – 24m – 2m2 – 10m + 12
= 4m3 + 20m2 – 2m2 – 24m – 10m + 12
= 4m3 + 18m2 – 34m + 12
(vii)
(8 – 12x + 7x2 – 6x3)(5 – 2x)
= 5(8 – 12x + 7x2 – 6x3) – 2x (8 – 12x + 7x2 – 6x3)
= 40 – 60x + 35x2 – 30x3 – 16x + 24x4 – 14x3 + 12x4
= 40 – 60x – 16x + 35x2 + 24x4 – 30x3 – 14x3 + 12x4
= 40 – 76x + 59x2 – 44x3 + 12x4
(viii)
(4x2 – 4x + 1)(2x3 – 3x2 + 2)
= 4x2 (2x3 – 3x2 + 2) – 4x (2x3 – 3x2 + 2) + 1 (2x3 – 3x2 + 2)
= 8x5 – 12x4 + 8x2 – 8x4 + 12x3 – 8x + 2x3 – 3x2 + 2
= 8x5 – 12x4 – 8x4 + 12x3 + 2x3 + 8x2 – 3x2 – 8x + 2
= 8x5 – 20x4 + 14x3 + 5x2 – 8x + 2
(ix)
(6p2 – 8pq + 2q2) (- 5p)
= -5p × 6p2 – 5p × (- 8pq) – 5p (2q2)
= – 30p3 + 40p2q – 10pq2
(x)
– 4y (15 + 12y – 8z) (x – 2y)
= – 4y (x – 2y)(15x + 12y – 8z)
= (- 4xy + 8y2)(15x + 12y – 8z)
= – 4xy (15x + 12y – 8z) + 8y2 (15x +12y – 8z)
= -60x2y – 48xy2 + 32xy + 120xy2 + 96y3 – 64y2z
= -60x2y – 48xy2 + 120xy2 – 64y2z + 96y3 + 32xy
= -60x2y + 72xy2 – 64y2z + 96y3 + 32xyz
(xi)
(a2 + b2 + c2 – ab – bc – ca)(a + b + c)
= a (a2 + b2 + c2 – ab – bc – ca) + b (a2 + b2 + c2 – ab – bc – ca) + c (a2 + b2 + c2 – ab – bc – ca)
= a3 + ab2 + ac2 – a2b – abc – ca2 +a2b + b3 + bc2 – ab2 – b2c – abc + a2c + b2c + c3 – abc – bc2 – c2a
= a3 + b3 + c3 -a2b + a2b – ca2 + a2c + bc2 – bc2 – ab2 + ab2 – abc – abc – abc + ac2 – ac2 + b2c – b2c
= a3 + b3 + c3 – 3abc
Question 4.
Evaluate:
Answer
(i)
(a + b)(a – b)
= a (a – b) + b(a – b)
= a2 – ab + ab – b2
= a2 – b2
(ii)
(a2 + b2)(a + b)(a – b)
= (a2 + b2)(a2 – b2) …{from(i)}
= a2 (a2 – b2) + b2 (a2 – b2)
= a4 – a2b2 + a2b2 – b4
= a8 – a4b4 + a4b4 – b8
= a4 – b4
(iii)
(a4 + b4)(a2 + b2)(a + b)(a – b)
= (a4 + b4) (a4 – b4) ….{from(ii)}
= a4 (a4 + b4) + b4 (a4 + b4)
= a8 – a4b4 + a4b4 – b8
= a8 – b8
Question 5.
Evaluate :
Answer
(i)
(3x – 2y)(4x + 3y)
= 3x (4x + 3y) – 2y (4x + 3y)
= 12x2 + 9xy – 8xy – 6y2
= 12x2 + xy – 6y2
(ii)
(3x – 2y)(4x + 3y)(8x – 5y)
= 3x (4x + 3y) – 2y (4x + 3y)(8x – 5y)
= (12x2 + 9xy – 8xy – 6y2 )(8x – 5y)
= (12x2 + xy – 6y2 )(8x – 5y)
= 8x (12x2 + xy – 6y2 ) – 5y (12x2 + xy – 6y2 )
= 96x3 + 8x2y – 48xy2 – 60x2y – 5xy2 + 30y3
= 96x3 + 8x2y – 60x2y – 48xy2 – 5xy2 + 30y3
= 96x3 – 52x2y – 53xy2 + 30y3
(iii)
(a + 5)(3a – 2)(5a + 1)
= {a (3a – 2) + 5(3a – 2)} (5a + 1)
= (3a2 – 2a + 15a – 10)(5a + 1)
= (3a2 + 13a – 10)(5a + 1)
= 5a (3a2 + 13a – 10) + 1 (3a2 + 13a – 10)
= 15a3 + 65a2 – 50a + 3a2 + 13a – 10
= 15a3 + 68a2 – 37a – 10
(iv)
(a + 1)(a2 – a + 1) and (a – 1)(a2 + a + 1)
= a (a2 – a + 1) + 1 (a2 – a + 1)
= a3 – a2 + a + a2 – a + 1
= a3 + 1
(a – 1)(a2 + a + 1)
= a(a2 + a + 1) – 1(a2 + a + 1)
= a3 + a2 + a – a2 – a – 1
= a3 – 1
Now, (a + 1)(a2 – a + 1) + (a – 1)(a2 + a + 1)
= a3 + 1 + a3 – 1
= 2a3
(v)
(5m – 2n)(5m + 2n)(25m2 + 4n2)
= {5m (5m + 2n) – 2n(5m + 2n)} (25m2 + 4n2)
= (25m2 + 10mn – 10mn – 4n2)(25m2 + 4n2)
= (25m2 – 4n2)(25m2 + 4n2)
= 25m2 (25m2 + 4n2) – 4n2 (25m2 + 4n2)
= 625m4 + 100m2n2 – 100m2n2 – 16n4
= 625m4 – 16n4
Question 6.
Multiply:
Answer
(i)
mn4, m3n and 5m2n3
⇒ 5m2n3 × mn4 × m3n
⇒5m2+1+3 n3+4+1
= 5m6n8
(ii)
2mnpq, 4mnpq and 5mnpq
⇒ 5mnpq × 2mnpq × 4mnpq
⇒5×2×4m1+1+1 n1+1+1 p1+1+1 q1+1+1
⇒ 40m3n3p3q3
(iii)
pq – pm and p2m
⇒ p2m × (pq – pm)
⇒ p3qm – p3m2
(iv)
x3 – 3y3 and 4x2y2
⇒ 4x2y2 × (x3 – 3y3)
⇒ 4x5y2 – 12x2y5
(v)
a3 – 4ab and 2a2b
⇒ 2a2b × (a3 – 4ab)
⇒ 2a5b – 8a3b2
(vi)
x2 + 5yx – 3y2 and 2x2y
⇒ 2x2y × (x2 + 5yx – 3y2)
⇒ 2x4y + 10x3y2 – 6x2y3
Question 7.
Multiply:
Answer
(i)
(2x + 3y)(2x + 3y)
⇒ 2x (2x + 3y) + 3y(2x + 3y)
⇒ 4x2 + 6xy + 6xy + 9y2
⇒ 4x2 + 12xy + 9y2
(ii)
(2x – 3y)(2x + 3y)
⇒ 2x (2x + 3y) – 3y(2x + 3y)
⇒ 2x × 2x + 2x × 3y – 3y × 2x – 3y × 3y
⇒ 4x2 + 6xy – 6xy – 9y2
⇒ 4x2 + 0 – 9y2
⇒ 4x2 – 9y2
(iii)
(2x – 3y)(2x + 3y)
⇒ 2x (2x + 3y) – 3y(2x + 3y)
⇒ 2x × 2x + 2x × 3y – 3y × 2x – 3y × 3y
⇒ 4x2 + 6xy – 6xy – 9y2
⇒ 4x2 + 0 – 9y2
⇒ 4x2 – 9y2
(iv)
(2x – 3y)(2x – 3y)
⇒ 2x (2x – 3y) – 3y(2x – 3y)
⇒ 2x × 2x – 2x × 3y + 3y × 2x + 3y × 3y
⇒ 4x2 – 6xy – 6xy + 9y2
⇒ 4x2 – 12xy + 9y2
(v)
(- 2x + 3y)(2x – 3y)
⇒ – 2x (2x – 3y) + 3y(2x – 3y)
⇒ – 4x2 + 6xy + 6xy – 9y2
⇒ – 4x2 + 12xy – 9y2
(vi)
(xy + 2b)(xy – 2b)
⇒ xy (xy – 2b) + 2b (xy – 2b)
⇒ x2y2 – 2bxy + 2bxy – 4b2
⇒ x2y2 – 4b2
(vii)
(x – a)(x + 3b)
⇒ x (x + 3b) – a (x + 3b)
⇒ x2 + 3bx – ax – 3ab
(viii)
(2x + 5y + 6)(3x + y – 8)
⇒ 2x (3x + y – 8) + 5y(3x + y – 8) + 6 (3x + y – 8)
⇒ 6x2 + 2xy – 16x + 15xy + 5y2 – 40y + 18x + 6y – 48
⇒ 6x2 + 2xy + 15xy – 16x + 18x + 5y2 – 40y + 6y – 48
⇒ 6x2 + 17xy + 2x + 5y2 – 34y – 48
(ix)
(3x – 5y + 2)(5x – 4y – 3)
⇒ 3x (5x – 4y – 3) – 5y (5x – 4y – 3) + 2 (5x – 4y – 3)
⇒ 15x2 – 12xy – 9x – 25xy + 20y2 + 15y + 10x – 8y – 6
⇒ 15x2 – 12xy – 25xy – 9x + 10x + 20y2 + 15y – 8y – 6
⇒ 15x2 – 37xy + x + 20y2 + 7y – 6
(x)
(6x – 2y)(3x – y)
⇒ 6x (3x – y) – 2y (3x – y)
⇒ 18x2 – 6xy – 6xy + 2y2
⇒ 18x2 – 12xy + 2y2
(xi)
(1 + 6x2 – 4x3)(-1 + 3x – 3x2)
⇒ 1(- 1 + 3x – 3x2) + 6x2 (- 1 + 3x – 3x2) – 4x3 (- 1 + 3x – 3x2)
⇒ – 1 + 3x – 3x2 – 6x2 + 18x3 – 18x4 + 4x3 – 12x4 + 12x5
⇒ – 1 + 3x – 9x2 + 22x3 – 30x4 + 12x5
ICSE Class-7 Concise Selina mathematics Solutions Exe- 11 D
Question 1.
Divide:
Answer
(i)
– 16ab2c by 6abc
=-16ab2c/6abc
=-(8/3)b
(ii)
25x2y by – 5y2
=25x2y/-5y2
=-5x2 /y
(iii)
8x + 24 by 4
(iv)
4a2 – a by – a
= (4a2-a)/-a
= (4a2 /-a) – (a-a)
= – 4a + 1
(v)
8m – 16 by – 8
(vi)
– 50 + 40p by 10p
(vii) 4x3 – 2x2 by – x
= – 4x2 + 2x
(viii)
10a3 – 15a2b by – 5a2
(ix) 12x3y – 8x2y2 + 4x2y3 by 4xy
= 3x2 – 2xy + xy2
(x) 9a4b – 15a3b2 + 12a2b3 by – 3a2b
= – 3a2 + 5ab – 4b2
Question 2.
Divide :
Answer
(i)
9a4b – 15a3b2 + 12a2b3 by – 3a2b
= – 3a2 + 5ab – 4b2
(ii)
m2 – 2mn + n2 by m – n
m – n
= m – n
(iii)
a2 + 4a + 1 by 2a + 1
2a + 1
= 2a + 1
(iv)
p2 + 4p + 4 by p + 2
p + 2
= p + 2
(v)
x2 + 4xy + 4y2 by x + 2y
x + 2y
= x + 2y
(vi)
2a2 – 11a + 12 by a – 4
2a – 3
= 2a – 3
(vii)
6x2 + 5x – 6 by 2x + 3
3x – 2
= 3x – 2
(viii)
8a2 + 4a – 60 by 2a – 5
4a + 12
= 4a + 12
(ix)
9x2 – 24xy + 16y2 by 3x- 4y
3x – 4y
= 3x – 4y
(x)
15x2 + 31xy + 14y2 by 5x + 7y
3x + 2y
= 3x + 2y
(xi)
35a3 + 3a2b – 2ab2 by 5a – b
7a2 + 2ab
= 7a2 + 2ab
(xii)
6x3 + 5x2 – 21x + 10 by 3x – 2
2x2 + 3x – 5
= 2x2 + 3x – 5
Question 3.
The area of a rectangle is 6x2– 4xy – 10y2 square unit and its length is 2x + 2y unit. Find its breadth
Answer
Area of a rectangle
= 6x2 – 4xy – 10y2 sq.units
Length = 2x + 2y units
= 3x – 5y units
Hence breadth = 3x – 5y units
Question 4.
The area of a rectangular field is 25x2 + 20xy + 3y2 square unit. If its length is 5x + 3y unit, find its breadth, Hence find its perimeter.
Answer
Area of a rectangle
= 25x2 + 20xy + 3y2
Length = (5x + 3y) units
Hence Breadth = 5x + y
Hence perimeter of rectangular field
= 2 (l + b)
= 2 (5x + 3y + 5x + y)
= 2 (10x + 4y)
= 20x + 8y
Question 5.
Divide:
Answer
(i)
2m3n5 by – mn
= 2m3n5 / -mn
= – 2m2n4
(ii) 5x2 – 3x by x
= 5x – 3
(iii) 10x3y – 9xy2 – 4x2y2 by xy
= 10x2 – 9y – 4xy
(iv)
3y3 – 9ay2 – 6ab2y by -3y
= – y2 + 3ay2 + 2ab2
(v)
x5 – 15x4 – 10x2 by -5x2
(vi) 12a2 + ax – 6x2 by 3a – 2x
= 4a + 3x
(vii)
6x2 – xy – 35y2 by 2x – 5y
= 3x + 7y
(viii) x3 – 6x2 + 11x – 6 by x2 – 4x + 3
= x – 2
(ix)
m3 – 4m2 + m + 6 by m2 – m – 2
= m – 3
Fundamental Concepts ICSE Class-7 Exe- 11 E
Simplify
Question 1.
Answer
Question 2.
Answer
Question 3.
Answer
Question 4.
Answer
Question 5.
Answer
Question 6.
Answer
Question 7.
Answer
(LCM of 2, 3, 5 = 30)
Question 8.
Answer
(LCM of 5, 4 = 20)
Question 9.
Answer
Question 10.
Answer
Question 11.
Answer
Question 12.
Answer
Question 13.
Answer
Question 14.
Answer
Question 15.
Answer
Question 16
Answer
Question 17.
Answer
Question 18.
Answer
.(LCM of 3,2 = 6)
Question 19.
Answer
Question 20.
Answer
Question 21
.
Answer
Question 22.
Answer
Question 23.
Answer
Question 24.
Answer
Question 25.
Answer
Question 26.
Answer
Exe – 11 F Concise Selina Maths ICSE Class-7
Enclose the given terms in brackets as required :
Question 1.
x – y – z = x-{…….)
Answer
x – y – z = x – (y + z)
Question 2.
x2 – xy2 – 2xy – y2 = x2 – (…….. )
Answer
x2 – xy2 – 2xy – y2
= x2 – (xy2 + 2xy + y2)
Question 3.
4a – 9 + 2b – 6 = 4a – (…….. )
Answer
4a – 9 + 2b – 6
= 4a – (9 – 2b + 6)
Question 4.
x2 -y2 + z2 + 3x – 2y = x2 – (…….. )
Answer
x2 -y2 + z2 + 3x – 2y
= x2 – (y2 – z2 – 3x + 2y)
Question 5.
– 2a2 + 4ab – 6a2b2 + 8ab2 = – 2a (……… )
Answer
– 2a2 + 4ab – 6a2b2 + 8ab2
= – 2a (a – 2b + 3ab2 – 4b2)
Simplify :
Question 6.
2x – (x + 2y- z)
Answer
2x – (x + 2y- z)
= 2x – x – 2y + z
= x – 2y + z
Question 7.
p + q – (p – q) + (2p – 3q)
Answer
p + q – (p – q) + (2p – 3q)
= p + q – p + q + 2p – 3q
= 2p – q
Question 8.
9x – (-4x + 5)
Answer
9x – (- 4x + 5)
= 9x + 4x – 5
= 13x – 5
Question 9.
6a – (- 5a – 8b) + (3a + b)
Answer
6a – (- 5a – 8b) + (3a + b)
= 6a + 5a + 8b + 3a + b
= 6a + 5a + 3a + 8b + b
= 14a + 9b
Question 10.
(p – 2q) – (3q – r)
Answer
(p – 2q) – (3q – r)
=p – 2q – 3q + r
=p – 5q + r
Question 11.
9a (2b – 3a + 7c)
Answer
9a (2b – 3a + 7c)
= 18ab – 27a2 + 63ca
Question 12.
-5m (-2m + 3n – 7p)
Answer
– 5m (-2m + 3n – 7p)
= – 5m x (-2m) + (-5m) (3n) – (-5m) (7p)
= 10m2 – 15mn + 35 mp.
Question 13.
-2x (x + y) + x2
Answer
– 2x (x + y) + x2
= -2x × x + (-2x)y + x2
= – 2x2 – 2xy + x2
= – 2x2 + x2 – 2xy = – x2 – 2xy
Question 14.
Answer
= b × 2b – b × (1/b) – 2b×b+2b×(1/b)
= 2b2 – 1 – 2b2 + 2
= 2b2 – 2b2 – 1 + 2
= 1
Question 15.
8 (2a + 3b – c) – 10 (a + 2b + 3c)
Answer
8 (2a + 3b – c) – 10 (a + 2b + 3c)
= 16a + 24b – 8c – 10a – 20b- 30c
= 16a – 10a + 24b – 20b – 8c – 30c
= 6a + 4b – 38c
Question 16.
Answer
= a2 + 1 – b2 + 1 – c2 – 1
= a2 – b2 – c2 + 1
Question 17.
5 x (2x + 3y) – 2x (x – 9y)
Answer
5 x (2x + 3y) – 2x (x – 9y)
= 10x2 + 15xy – 2x2 + 18xy
= 10x2 – 2x2 + 15xy+ 18xy
= 8x2 + 33xy
Question 18.
a + (b + c – d)
Answer
a + (b + c – d)
= a + (b + c – d)
= a + b + c – d
Question 19.
5 – 8x – 6 – x
Answer
5 – 8x – 6 – x
= 5 – 6 – 8x – x
= -1 – 7x
Question 20.
2a + (6- )
Answer
2a + (6- )
= 2a + (b – a + b)
= 2a + b – a + b
= a + 2b
Question 21.
3x + [4x – (6x – 3)]
Answer
3x + [4x – (6x – 3)]
= 3x + [4x – 6x + 3]
= 3x + 4x – 6x + 3
= 3x + 4x – 6x + 3
= 7x – 6x + 3
= x + 3
Question 22.
5b – {6a + (8 – b – a)}
Answer
5b – {6a + (8 – b – a)}
= 5b – 6a – 8 + b + a
= -6a + a + 5b +b – 8
= -5a + 6b – 8
Question 23.
2x-[5y- (3x -y) + x]
Answer
2x – [5y – (3x – y) + x]
= 2x – {5y – 3x +y + x}
= 2x – 5y + 3x -y – x
= 2x + 3x – x – 5y – y
= 4x – 6y
Question 24.
6a – 3 (a + b – 2)
Answer
6a – 3 (a + b – 2)
= 6a – 3a – 3b + 6
= 3a – 3b + 6
Question 25.
8 [m + 2n-p – 7 (2m -n + 3p)]
Answer
8 [m + 2n – p – 7 (2m – n + 3p)]
= 8 [m + 2n – p- 14m + 7n – 21p]
= 8m+ 16n – 8p – 112m + 56n – 168p
= 8m – 112m + 16n + 56n – 8p – 168p
= -104m + 72n – 176p
Question 26.
{9 – (4p – 6q)} – {3q – (5p – 10)}
Answer
{9 – (4p – 6q)} – {3q – (5p – 10)}
= {9 – 4p + 6q} – {3q -5p+ 10}
= 9 – 4p + 6q – 3q + 5p – 10
= 9 – 4p + 5p + 6q – 3q – 10
= p + 3q – 1
Question 27.
2 [a – 3 {a + 5 {a – 2) + 7}]
Answer
2 [a – 3 {a + 5 {a – 2) + 7}]
= 2 [a – 3 {a + 5a – 10 + 7}]
= 2 [a – 3a – 15a + 30 – 21]
= 2a – 6a – 30a + 60 – 42
= 2a – 36a + 60 – 42
= -34a + 18
Question 28.
5a – [6a – {9a – (10a – )}]
Answer
5a – [6a – {9a – (10a – )}]
= 5a – [6a – {9a – (10a – 4a + 3a)}]
= 5a – [6a – {9a – 10a + 4a – 3a}]
= 5a- [6a – 9a + 10a – 4a + 3a]
= 5a – 6a + 9a – 10a + 4a – 3a
= 5a + 9a + 4a – 6a – 10a – 3a
= 18a – 19a
= – a
Question 29.
9x + 5 – [4x – {3x – 2 (4x – 3)}]
Answer
9x + 5 – [4x – {3x – 2 (4x – 3)}]
= 9x + 5 – [4x – {3x – 8x + 6}]
= 9x + 5 – [4x – 3x + 8x – 6]
= 9x + 5-4x + 3x – 8x + 6
= 9x + 3x – 4x – 8x + 5 + 6
= 12x – 12x + 11
= 11
Question 30.
(x + y – z)x + (z + x – y)y – (x + y – z)z
Answer
(x + y – z)x + (z + x – y)y – (x + y – z)z
= x2+ xy – zx + yz + xy -y2 – zx – yz + z2
= x2 – y2 + z2 + 2xy – 2zx
Question 31.
-1 [a-3 {b -4 (a-b-8) + 4a} + 10]
Answer
-1 [a – 3 {b – 4 (a – b – 8) + 4a} + 10]
= -1 [a – 3 {b – 4{a – b – 8) + 4a} + 10]
= -1[a – 3 {b – 4a + Ab +32 + 4a} + 10]
= -1 [a – 3b + 12a – 126 – 96 – 12a + 10]
= -a + 3b – 12a + 12b + 96 + 12a – 10
= -a-12a + 12a+ 3b+ 12b – 96 – 10
= – a + 15b – 106
Question 32.
Answer
Question 33.
10 – {4a – (7 – ) – (5a –
)}
Answer
10 – {4a – (7 – ) – (5a –
)}
= 10 – {4a – (7 – a + 5) – (5a – 1 – a)}
= 10- {4a -(12 – a) -(4a – 1)}
= 10 – {4a – 12 + a- 4a + 1}
= 10 – 4a + 12 – a + 4a – 1
= 10 + 12 – 1 – 4a – a + 4a
= 21 – a
Question 34.
7a- [8a- (11a-(12a- )}]
Answer
7a- [8a- (11a-(12a- )}]
= 7a – [8a – {11a – (12a – 6a + 5a)}]
= 7a – [8a – {11a – (17a – 6a)}]
= 7a – [8a – {11a – (11a)}]
= 7a – [8a – {11a – 11a}]
= 7a – 8a
= – a
Question 35.
Answer
= 8x – [4y – {4x + (2x – 2y + 2x)}]
= 8x – [4y – {4x + (4x – 2y)}]
= 8x – [4y – {4x + 4x – 2y}]
= 8x – [4y – {4x – 4x + 2y}]
= 8x – [- 8x + 6y]
= 8x + 8x – 6y
= 16x – 6y
Question 36.
x-(3y- +2z-
)
Answer
x-(3y- +2z-
)
= x – (3y – 4z + 3x + 2z -5y + 7x)
= x – (- 2y – 2z + 10x)
= x + 2y + 2z – 10x
= – 9x + 2y + 2z
— End of Fundamental Concepts Solutions :–
Return to – Concise Selina Maths Solutions for ICSE Class -7
Thanks