# Heights and Distances ML Aggarwal Solutions ICSE Class-10

Heights and Distances ML Aggarwal Solutions ICSE Class-10 Chapter-20. We Provide Step by Step Answer of Exercise-20 with MCQs and Chapter-Test of Heights and Distances Questions  / Problems related  for ICSE Class-10 APC Understanding Mathematics  . Visit official Website CISCE  for detail information about ICSE Board Class-10.

## Heights and Distances ML Aggarwal Solutions ICSE Class-10 Chapter-20

-: Select Topic :-

Exercise – 20 ,

MCQS ,

Chapter-Test

### How to Solve Heights and Distances Problems/Questions / Exercise of ICSE Class-10 Mathematics

Before viewing Answer of Chapter-20 Heights and Distances of ML Aggarwal Solutions. Read the Chapter Carefully with formula and then solve all example of Exe-20  given in  your text book . For more practice on Heights and Distances  related problems /Questions / Exercise try to solve Heights and Distances  exercise of other famous publications also such as  / Concise Selina Publications ICSE  Mathematics. Get the Formula of Heights and Distances   for ICSE Class 10 Maths  to understand the topic more clearly in effective way.

### Chapter-20, Heights and Distances ML Aggarwal Solutions for ICSE Maths

Exercise -20

#### Question 1

An electric pole is 10 metres high. If its shadow is 10√3 metres in length, find the elevation of the sun.

#### Answer 1

Let AB be the pole and
OB is its shadow. #### Question 2

The angle of elevation of the top of a tower from a point on the ground and at a distance of 150 m from its foot is 30°. Find the height of the tower correct to one place of decimal

#### Answer 2

Let BC be the tower and
A is the point on the ground such that
∠A= 30° and AC = 150 m #### Question 3

A ladder is placed against a wall such that it just reaches the top of the wall. The foot of the ladder is 1.5 metres away from the wall and the ladder is inclined at an angle of 60° with the ground. Find the height of the wall.

#### Answer 3

Let AB be the wall and AC be the ladder
whose foot C is 1.5 m away from B
Let AB = x m and angle of inclination is 60°

#### Question 4

What is the angle of elevation of the sun when the length of the shadow of a vertical pole is equal to its height.

#### Answer 4

Let AB be the pole and CB be its shadow
and θ is the angle of elevation of the sun.
Let AB = x m, then BC = x m #### Question 5

A river is 60 m wide. A tree of unknown height is on one bank. The angle of elevation of the top of the tree from the point exactly opposite to the foot of the tree on the other bank is 30°. Find the height of the tree.

#### Answer 5

Let AB be the tree and BC is the width of the river
and C is the point exactly opposite to B on the other bank
and angle of elevation is 30°.

#### Question 6

From a point P on level ground, the angle of elevation of the top of a tower is 30°. If the tower is 100 m high, how far is P from the foot of the tower ?

#### Answer 6

Let AB be the tower and P is at a distance of x m from B, the foot of the tower.
While the height of the tower AB = 100 m
and angle of elevation = 30° #### Question 7

From the top of a cliff 92 m high, the angle of depression of a buoy is 20°. Calculate to the nearest metre, the distance of the buoy from the foot of the cliff. (2005)

#### Answer 7

Let AB be cliff whose height is 92 m
and C is buoy making depression angle of 20°.

#### Question 8

A boy is flying a kite with a string of length 100 m. If the string is tight and the angle of elevation of the kite is 26°32′, find the height of the kite correct to one decimal place, (ignore the height of the boy).

#### Answer 8

Let AB be the height of the kite A and AC is the string
and angle of elevation of the kite is 26°32′ #### Question 9

An electric pole is 10 m high A steel wire tied to the top of the pole is affixed at a point on the ground to keep the pole upright. If the wire makes an angle of 45° with the horizontal through the foot of the pole, find the length of the wire.

#### Answer 9

Let AB be the pole and AC be the wire
which makes an angle of 45° with the ground.
Height of the pole AB = 10 m
and let the length of wire AC = x m

#### Question 10

A bridge across a river makes an angle of 45° with the river bank. If the length of the bridge across the river is 200 metres, what is the breadth of the river. #### Answer 10

Let AB be the width of river = xm
Length of the bridge AC = 200 m
and angle with the river bank = 45°
sin θ = $\\ \frac { AB }{ AC }$
⇒ sin 45° = $\\ \frac { x }{ 200 }$ #### Question 11

A vertical tower is 20 m high. A man standing at some distance from the tower knows that the cosine of the angle of elevation of the top of the tower is 0.53. How far is he standing from the foot of the tower ? (2001)

#### Answer 11

Let AB be the tower and
let a man C stands at a distance from the foot of the tower = x m
and cos θ = 0.53

#### Question 12

The upper part of a tree broken by wind, falls to the ground without being detached. The top of the broken part touches the ground at an angle of 38°30′ at a point 6 m from the foot of the tree. Calculate.
(i) the height at which the tree is broken.
(ii) the original height of the tree correct to two decimal places.

#### Answer 12

Let TR be the total height of the tree
and TP is the broken part which touches the ground
at the distance of 6 m from the foot of the tree
making an angle of 38°30′ with the ground.
Let PR = x and TR = x + y
PQ = PT = y
In right ∆PQR Height of the tree = 4.7724 + 7.6665 = 12.4389 = 12.44 m
and height of the tree at which it is broken = 4.77 m

#### Question 13

An observer 1.5 m tall is 20.5 metres away from a tower 22 metres high. Determine the angle of elevation of the top of the tower from the eye of the observer.

#### Answer 13

In the figure, AB is tower and CD is an observer.
θ is the angle of observation from

#### Question 14

(i) In the adjoining figure, the angle of elevation from a point P of the top of a tower QR, 50 m high is 60° and that of the tower PT from a point Q is 30°. Find the height of the tower PT, correct to the nearest metre.
(ii) From a boat 300 metres away from a vertical cliff, the angles of elevation of the top and the foot of a vertical concrete pillar at the edge of the cliff are 55°40′ and 54°20′ respectively. Find the height of the pillar correct to the nearest metre. #### Answer 14

Let CB be the cliff and AC be the pillar
and D be the boat which is 300 m away from
the foot of the cliff i.e. BD = 300 m.
Angles of elevation of the top and foot of the pillar
are 55°40′ and 54°20′ respectively.
Let CB = x and AC = y
In right ∆CBD,

#### Question 15

From a point P on the ground, the angle of elevation of the top of a 10 m tall building and a helicopter hovering over the top of the building are 30° and 60° respectively. Find the height of the helicopter above the ground.

#### Answer 15

let AB be the building and H is the helicopter hovering over it.
P is a point on the ground,
the angle of elevation of the top of building and helicopter are 30° and 60° #### Question 16

An aeroplane when flying at a height of 3125 m from the ground passes vertically below another plane at an instant when the angles of elevation of the two planes from the same point on the ground are 30° and 60° respectively. Find the distance between the two planes at the instant.

#### Answer 16

Let the distance between the two planes = h m
Given that, AD = 3125 m and ∠ACB = 60° and ∠ACD = 30° #### Question 17

A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is 60° ; when he retires 20 m from the bank, he finds the angle to be 30°. Find the height of the tree and the breadth of the river. .

#### Answer 17

Let TR be the tree and PR be the width of the river. #### Question 18

The shadow of a vertical tower on a level ground increases by 10 m when the altitude of the sun changes from 45° to 30°. Find the height of the tower, correct to two decimal places. (2006)

#### Answer 18

In the figure, AB is the tower,
BD and BC are the shadow of the tower in two situations.
Let BD = x m and AB = h m
In ∆ABD, #### Question 19

From the top of a hill, the angles of depression of two consecutive kilometer stones, due east are found to be 30° and 45° respectively. Find the distance of two stones from the foot of the hill.

#### Answer 19

Let A and B be the position of two consecutive kilometre stones.
Then AB = 1 km = 1000m
Let the dIstance BC = x m
∴ Distance AC = (1000 + x) m

#### Question 20

A man observes the angles of elevation of the top of a building to be 30°. He walks towards it in a horizontal line through its base. On covering 60 m the angle of elevation changes to 60°. Find the height of the building correct to the nearest me he.

#### Answer 20

Given that
AB is a building CD = 60 m #### Question 21

At a point on level ground, the angle,of elevation of a vertical lower is found to be such that its tangent is $\\ \frac { 5 }{ 12 }$. On walking 192 m towards the tower,the tangent of the angle is found to be $\\ \frac { 3 }{ 4 }$. Find the height of the tower. (1990)

#### Answer 21

Let TR be the tower and P is the point on the
ground such that tan θ = $\\ \frac { 5 }{ 12 }$ #### Question 22

In the figure, not drawn to scale, TF is a tower. The elevation of T from A is x° where tan x = $\\ \frac { 2 }{ 5 }$ and AF = 200 m. The elevation of T from B, where AB = 80 m, is y°. Calculate :
(i) The height of the tower TF.
(ii) The angle y, correct to the nearest degree. (1997) #### Answer 22

Let height of the tower TF = x
tan x = $\\ \frac { 2 }{ 5 }$, AF = 200 m, AB = 80 m
(i) In right ∆ATF, #### Question 23

From the top of a church spire 96 m high, the angles of depression of two vehicles on a road, at the same level as the base of the spire and on the same side of it are x° and y°, where tan x° = $\\ \frac { 1 }{ 4 }$ and tan y° = $\\ \frac { 1 }{ 7 }$. Calculate the distance between the vehicles. (1994)

#### Answer 23

Height of the church CH.
Let A and B are two vehicles which make the angle of depression
from C are x° and y° respectively. #### Question 24

In the adjoining figure, not drawn to the scale, AB is a tower and two objects C and D are located on the ground, on the same side of AB. When observed from the top A of the tower, their angles of depression are 45° and 60°. Find the distance between the two objects. If the height of the tower is 300 m. Give your answer to the nearest metre. (1998)

#### Answer 24

Let CB = x and
DB = y
AB = 300 m #### Question 25

The horizontal distance between two towers is 140 m. The angle of elevation of the top of the first tower when seen from the top of the second tower is 30°. If the height of the second tower is 60 m, find the height of the first tower.

#### Answer 25

Let the height of first tower TR = x
height of second tower PQ = 60 m
Distance between the two towers QR = 140 m #### Question 26

As observed from the top of a 80 m tall lighthouse, the angles of depression of two ships on the same side of the ,lighthouse in horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest metre.

#### Answer 26

Let AB be the lighthouse and C and D be the two ships. #### Question 27

The angle of elevation of a pillar from a point A on the ground is 45° and from a point B diametrically opposite to A and on the other side of the pillar is 60°. Find the height of the pillar, given that the distance between A and B is 15 m.

#### Answer 27

Let CD be the pillar and let CD = x
Angles of elevation of points A and B are 45° and 60° respectively.

#### Question 28

From two points A and B on the same side of a building, the angles of elevation of the top of the building are 30° and 60° respectively. If the height of the building is 10 m, find the distance between A and B correct to two decimal places

#### Answer 28

In ∆DBC, tan 60° = $\\ \frac { 10 }{ BC }$
⇒ √3= $\\ \frac { 10 }{ BC }$
⇒ BC = $\frac { 10 }{ \sqrt { 3 } }$
∆DBC ,tan 30° = $\\ \frac { 10 }{ BC+AB }$ #### Question 29

(i) The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the; two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number. (2017)
(ii) An aeroplane at an altitude of 250 m observes the angle of depression of two boats on the opposite banks of a river to be 45° and 60° respectively. Find the width of the river. Write the answer correct to the nearest whole number. (2014)

#### Answer 29

(i) Let AD be the height of the lighthouse CD = 60 m
Let AD = x m, BD = y m #### Question 30

From a tower 126 m high, the angles of depression of two rocks which are in a horizontal line through the base of the tower are 16° and 12°20′ Find the distance between the rocks if they are on
(i) the same side of the tower
(ii) the opposite sides of the tower.

#### Answer 30

Let CD be the tower and CD = 126 m
Let A and B be the two rocks on the same line
and angles of depression are 16° and 12°20′ respectively, #### Question 31

A man 1.8 m high stands at a distance of 3.6 m from a lamp post and casts a shadow of 5.4 m on the ground. Find the height of the lamp post.

#### Answer 31

AB is the lamp post CD is the height of man.
BD is the distance of man from the foot of the lamp
and FD is the shadow of man.
CE || DB. #### Question 32

The angles of depression of the top and the bottom of an 8 m tall building from the top of a multi-storeyed building are 30° and 45° respectively. Find the height of tire multi-storeyed building and the distance between the two buildings, correct to two decimal places.

#### Answer 32

Let AB be the CD be the building
The angles of depression in from A, to C
and D are 30° and 45° respectively
∠ACE = 30° and ∠ADB = 45°
CD = 8 m #### Question 33

A pole of height 5 m is fixed on the top of a tower. The angle of elevation of the top of the pole as observed from a point A on the ground is 60° and the angle of depression of the point A from the top of the tower is 45°. Find the height of the tower. (Take √3 = 1.732).

#### Answer 33

Let QR be the tower and PQ be the pole on it
Angle of elevation from P to a point A is ∠PAR = 60°
and angle of depression from Q to A = 45°
∠QAR = 45° (alternate angle)
PQ = 5 m, #### Question 34

A vertical pole and a vertical tower are on the same level ground. From the top of the pole the angle of elevation of the top of the tower is 60° and the angle of depression of the foot of the tower is 30°. Find the height of the tower if the height of the pole is 20 m.

#### Answer 34

Let TR is tower and
PL is the pole on the same level, ground PL = 20m
From P, draw PQ || LR
then ∠ TPQ = 60° and ∠ QPR = 30° #### Question 35

From the top of a building 20 m high, the angle of elevation of the top of a monumenti is 45° and the angle of depression of its foot is 15°. Find the height of the monument.

#### Answer 35

Let AB be the building and AB = 20 m and
let CD be the monument and let CD = x
The distance between the building and the monument be y, #### Question 36

The angle of elevation of the top of an unfinished tower at a point distant 120 m from its base is 45°. How much higher must the tower be raised so that its angle of elevation at the same point may be 60°?

#### Answer 36

Let AB be the unfinished tower and AB = 120 m
and angle of elevation = 45°
Let x be higher raised so that
the angle of elevation becomes 60°

#### Question 37

In the adjoining figure, the shadow of a vertical tower on the level ground increases by 10 m, when the altitude of the sun changes from 45° to 30°. Find the height of the tower and give your answer, correct to $\\ \frac { 1 }{ 10 }$ of a metre. #### Answer 37

Let TR be the tower and TR = h ;
Let BR = x,
AB = 10 m
Angles of elevation from the top of the tower
at A and B are 30° and 45° respectively. #### Question 38

An aircraft is flying at a constant height with a speed of 360 km/h. From a point on the ground, the angle of elevation of the aircraft at an instant was observed to be 45°. After 20 seconds, the angle of elevation was observed to be 30°. Determine the height at which the aircraft is flying (use √3 = 1.732)

#### Answer 38

Speed of aircraft = 360 km/h
Distance covered in 20 seconds = $\\ \frac { 360X20 }{ 60X60 }$ = 2 km
E is the fixed point on the ground
and CD is the position of AB in height of aircraft ### MCQ ML Aggarwal Solutions Heights and Distances for ICSE Maths Chapter 20

Multiple Choice Type

Choose the correct answer from the given four options (1 to 9):

#### Question 1

In the adjoining figure, the length of BC is
(a) 2 √3 cm
(b) 3 √3 km
(c) 4 √3 cm
(d) 3 cm #### Answer 1

In the given figure, $\\ \frac { BC }{ AC }$ = sin 30°
⇒ $\\ \frac { BC }{ 6 }$ = $\\ \frac { 1 }{ 2 }$
⇒ BC = $\\ \frac { 6 }{ 2 }$ = 3cm (d)

#### Question 2

In the adjoining figure, if the angle of elevation is 60° and the distance AB = 10 √3 m, then the height of the tower is
(a) 20 √3 cm
(b) 10 m
(c) 30 m
(d) 30 √3 m #### Answer 2

In the given figure,
∠A = 60°, AB = 10 √3 m
Let BC = h
tan 60° = $\frac { h }{ 10\sqrt { 3 } }$
⇒ $\sqrt { 3 } =\frac { h }{ 10\sqrt { 3 } }$
⇒ h = 10 √3 × √3 = 10 × 3 = 30 m (c)

#### Question 3

If a kite is flying at a height of 40 √3 metres from the level-ground, attached to a string inclined at 60° to the horizontal, then the length of the string is
(a) 80 m
(b) 60 √3 m
(c) 80 √3 m
(d) 120 m

#### Answer 3

Let K is kite
Height of KT = 40 √3 m
Angle of elevation of string at the ground = 60°
Let length of string AK = x m #### Question 4

The top of a broken tree has its top touching the ground (shown in the given figure) at a distance of 10 m from the bottom. If the angle made by the broken part with ground is 30°, then the length of the broken part is
(a) 10 √3 m
(b) $\frac { 20 }{ \sqrt { 3 } }$
(c) 20 m
(d) 20 √3 m #### Answer 4

From the figure, AC is the height of tree and from B, it was broken
AB = A’C
Angle of elevation = 30°
A’C = 10 m
Let AC = hm’
and A’B = x m
BC = h – x m $cos\theta =\frac { A'C }{ A'B }$ $cos{ 30 }^{ o }=\frac { 10 }{ x }$ #### Question 5

If the angle of depression of an object from a 75 m high tower is 30°, then the distance of the object from the tower is
(a) 25 √3 m
(b) 50√ 3 m
(c) 75 √3 m
(d) 150 m

#### Answer 5

Height tower AB = 75 m
C is an object on the ground and angle of depression from A is 30°.

#### Question 6

A ladder 14 m long rests against a wall. If the foot of the ladder is 7 m from the wall, then the angle of elevation is
(a) 15°
(b) 30°
(c) 45°
(d) 60°

#### Answer 6

Length of a ladder AB = 14 m #### Question 7

If a pole 6 m high casts shadow 2 √3 m long on the ground, then the sun’s elevation is
(a) 60°
(b) 45°
(c) 30°
(d) 90°

#### Answer 7

Height of pole AB = 6 m
and its shadow BC = 2√3 m #### Question 8

If the length of the shadow of a tower is √3 times that of its height, then the angle of elevation of the sun is
(a) 15°
(b) 30°
(c) 45°
(d) 60°

#### Answer 8

Let height of a tower AB = h m
Then its shadow BC = √3 hm

#### Question 9

In ∆ABC, ∠A = 30° and ∠B = 90°. If AC = 8 cm, then its area is
(a) 16 √3 cm²
(b) 16 m²
(c) 8 √3 cm²
(d) 6 √3 cm²

#### Answer 9

In ∆ABC, ∠A = 30°, ∠B = 90°
AC = 8 cm ### Chapter-Test ML Aggarwal Solutions Heights and Distances for ICSE Maths Chapter 20

Chapter Test

#### Question 1

The angle of elevation of the top of a tower from a point A (on the ground) is 30°. On walking 50 m towards the tower, the angle of elevation is found to be 60°. Calculate
(i) the height of the tower (correct to one decimal place).
(ii) the distance of the tower from A.

#### Answer 1

Let TR be the tower and A is a point on the ground
and angle of elevation of the top of tower = 30°
AB = 50 m
and from B, the angle of elevation is 60°
Let TR = h and AR = x
BR = x – 50 #### Question 2

An aeroplane 3000 m high passes vertically above another aeroplane at an instant when the angles of elevation of the two aeroplanes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the two planes.

#### Answer 2

Let A and B are two aeroplanes
and P is a point on the ground such that
angles of elevations from A and B are 60° and 45° respectively.
AC = 3000 m
Let AB = x
∴ BC = 3000 – x
Let PC = y #### Question 3

A 7m long flagstaff is fixed on the top of a tower. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are 45° and 36° respectively. Find the height of the tower correct to one place of demical.

#### Answer 3

Let TR be the tower and PT is the flag on it such that PT = 7m
Let TR = h and AR = x
Angles of elevation from P and T are 45° and 36° respectively.
Now in right ∆PAR #### Question 4

A boy 1.6 m tall is 20 m away from a tower and observes that the angle of elevation of the top of the tower is 60°. Find the height of the tower.

#### Answer 4

Let AB be the boy and TR be the tower
∴ AB = 1.6 m
Let TR = h
from A, show AE || BR
∴ ER = AB = 1.6 m
TE = h – 1.6
AE = BR = 20 m h = 36.24
∴ Height of tower = 36.24 m

#### Question 5

A boy 1.54 m tall can just see the sun over a wall 3.64 m high which is 2.1 m away from him. Find the angle of elevation of the sun.

#### Answer 5

Let AB be the boy and CD be the wall which is at a distance of 2.1 m

#### Question 6

In the adjoining figure, the angle of elevation of the top P of a vertical tower from a point X is 60° ; at a point Y, 40 m vertically above X, the angle of elevation is 45°. Find
(i) the height of the tower PQ
(ii) the distance XQ
(Give your answer to the nearest metre) #### Answer 6

Let PQ be the tower and let PQ = h
and XQ = YR = y
XY = 40 m
∴ PR = h – 40 #### Question 7

An aeroplane is flying horizontally 1 km above the ground is observed at an elevation of 60°. After 10 seconds, its elevation is observed to be 30°. Find the speed of the aeroplane in km/hr.

#### Answer 7

A and D are the two positions of the aeroplane ;
AB is the height and P is the point
∴ AB = 1 km,
Let AD = x and PB = y
and angles of elevation from A and D at point P are 60° and 30° respectively. #### Question 8

A man on the deck of a ship is 16 m above the water level. He observes that the angle of elevation of the top of a cliff is 45° and the angle of depression of the base is 30°. Calculate the distance of the cliff from the ship and the height of the cliff.

#### Answer 8

Let A is the man on the deck of a ship B and CE is the cliff.
AB = 16 m and angle of elevation from the top of the cliff in 45°

and the angle of depression at the base of the cliff is 30°.
Let CE = h, AD = x, then
CD = h – 16, AD = BE = x
Now in right ∆CAD #### Question 9

There is a small island in between a river 100 metres wide. A tall tree stands on the island. P and Q are points directly opposite to each other on the two banks and in the line with the tree. If the angles of elevation of the top of the tree from P and Q are 30° and 45° respectively, find the height of the tree.

#### Answer 9

The width of the river (PQ) = 100 m.
B is the island and AB is the tree on it. #### Question 10

A man standing on the deck of the ship which is 20 m above the sea-level, observes the angle of elevation of a bird as 30° and the angle of depression of its reflection in the sea as 60°. Find the height of the bird

#### Answer 10

Let P is the man standing on the deck of a ship
which is 20 m above the sea level and B is the bird.
Now angle of elevation of the bird from P = 30°
and angle of depression from P to the shadow of the bird in the sea –: End of Heights and Distances ML Aggarwal Solutions :–

Thanks

Please Share with Your Friends

Leave a comment
error: Content is protected !!