Linear Inequations ICSE Class-8th Concise Mathematics Selina Solutions Chapter-15 . We provide step by step Solutions of Exercise / lesson-15 Linear Inequations for ICSE Class-8 Concise Selina Mathematics. Our Solutions contain all type Questions with Exe-15 A and Exe-15 B to develop skill and confidence . Visit official Website CISCE for detail information about ICSE Board Class-8.
Linear Inequations ICSE Class-8th Concise Maths Selina Solutions Chapter-15
–: Select Topics :–
Exercise – 15 A of Linear Inequations Solved Questions for ICSE Class-8th Mathematics Concise Selina Publications
Question 1.
If the replacement set is the set of natural numbers, solve.
(i) x – 5 < 0
(ii) x + 1 < 7
(iii) 3x – 4 > 6
(iv) 4x + 1 > 17
Answer
(i)
x – 5 < 0
x – 5 + 5 <0 + 5 ………(Adding 5)
=> x < 5
Required answer = {1, 2, 3, 4}
(ii)
x + 1 ≤ 7
⇒ x + 1 – 1 ≤ 7 – 1 (Subtracting 1)
⇒ x ≤ 6
Required answer = {1, 2, 3, 4, 5, 6}
(iii)
3x – 4 > 6
3x – 4 + 4 > 6 + 4 (Adding 4)
⇒ 3x > 10
3x/3 > 10 3 …(Dividing by 3)
⇒ x > 10/3
⇒ x > 3 (1/3)
Required answer = { 4, 5, 6, …}
(iv)
4x + 1 ≥ 17
⇒ 4x + 1 – 1 ≥ 17 – 1 (Subtracting)
⇒ 4x ≥ 16
⇒ 4x/4 ≥ 16/4 (Dividing by 4)
⇒ x ≥ 4
Required answer = {4, 5, 6, …}
Question 2.
If the replacement set = {-6, -3, 0, 3, 6, 9}; find the truth set of the following:
(i) 2x – 1 > 9
(ii) 3x + 7 < 1
Answer
(i)
2x – 1 > 9
⇒ 2x – 1 + 1 > 9 + 1 (Adding 1)
⇒ 2x > 10
⇒ x > 5 (Dividing by 2)
⇒ x > 5
Required answer = {6, 9}
(ii)
3x + 7 ≤ 1
⇒ 3x + 7 – 7 ≤ 1 – 7 (Subtracting 7)
⇒ 3x ≤ – 6
⇒ x ≤ – 2
Required Answer = {-6, -3}
Question 3.
Solve 7 > 3x – 8; x ∈ N
Answer
> 3x – 8
⇒ 7 – 3x > 3x – 3x – 8 (Subtracting 3x)
⇒ 7 – 7 – 3x > 3x – 3x – 8 – 7 (Subtracting 7)
⇒ -3x > -15
⇒ x < 5 (Dividing by -3)
Required Answer = {1, 2, 3, 4}
Question 4.
-17 < 9y – 8 ; y ∈ Z
Answer
-17 < 9y – 8
⇒ -17 + 8 < 9y – 8 + 8 (Adding 8)
⇒ -9 < 9y
⇒ -1 < y (Dividing by 9)
Required number = {0, 1, 2, 3, 4, …}
Question 5.
Solve 9x – 7 ≤ 28 + 4x; x ∈ W
Answer
9x – 1 ≤ 28 + 4x
⇒ 9x – 4x – 7 ≤ 28 + 4x – 4x (Subtracting 4x)
⇒ 5x – 7 ≤ 28
⇒ 5x – 7 + 7 ≤ 28 + 7 (Adding 7)
⇒ 5x ≤ 35
⇒ x ≤ 7 (Dividing by 5)
Required answer = {0, 1, 2, 3, 4, 5, 6, 7}
Question 6.
Solve : x + 8 < 12 ; x ∈ W
Answer
⇒ x < 6
∴ Required answer = {0, 1, 2, 3, 4, 5}
Question 7.
Solve -5 (x + 4) > 30 ; x ∈ Z
Answer
-5 (x + 4) > 30
..(Dividing by -5)
Note: Division by a negative number reverses the equality.
⇒ x + 4 < -6
⇒ x + 4 – 4 < – 6 – 4 …(Subtracting 4)
⇒ x < -10
∴ Required answer = {-11, -12, -13, …}
Question 8.
Solve the inequation 8 – 2x > x – 5 ; x ∈ N.
Answer
8 – 2x ≥ x – 5; x ∈ N.
⇒ 8 + 5 ≥ 2x + x
⇒ 13 ≥ 3x ⇒ 3x ≤ 13
⇒ x ≤ 13/3 = 4 (1/3)
x = 1, 2, 3, 4 (x ∈ N)
Solution set = {1, 2, 3, 4}
Question 9.
Solve the inequality 18 – 3 (2x – 5) > 12; x ∈ W.
Answer
18 – 3 (2x – 5) > 12; x ∈ W.
⇒ 18 – 6x + 15 > 12
⇒ 33 – 12 > 6x
⇒ 21 > 6x
⇒ 6x < 21
⇒ x < (21/6)+ (7/2) = 3 (1/2)
But x ∈ W, x = 0, 1, 2, 3
∴ Solution set = {0, 1, 2, 3}
Question 10.
Solve : + 15 < 17; x ∈ W.
Answer
But x ∈ W
∴ x = 0, 1, 2
∴ Solution set is = {0, 1, 2}
Question 11.
Solve : -3 + x < 2, x ∈ N
Answer
-3 + x < 2, x ∈ N.
⇒ x < 2 – (-3)
⇒ x < 2 + 3
⇒ x < 5
∴ x = 1, 2, 3, 4 (∵ x ∈ N)
∴ Solution set = {1, 2, 3, 4}
Question 12.
Solve : 4x – 5 > 10 – x, x ∈ {0, 1, 2, 3, 4, 5, 6, 7}
Answer
4x – 5 > 10 – x, x ∈ N.
⇒ 4x + x > 10 + 5
⇒ 5x > 15
⇒ x > 15/5 = 3
∴ x = 4, 5, 6, 7
Solution set = {4, 5, 6, 7}
Question 13.
Solve : 15 – 2(2x – 1) < 15, x ∈ Z.
Answer
15 – 2(2x – 1) < 15, x ∈ Z.
⇒ 15 – 4x + 2 < 15
⇒ 17 – 4x < 15
⇒ – 4x < 15 – 17
⇒ – 4x < -2
(Dividing by -4)
∴ x = 1, 2, 3, 4, 5, …..
∴ Solution set = {1, 2, 3, 4, 5,…}
Question 14.
Solve : >
, x ∈ W.
Answer
⇒ 2(2x + 3) > 5(4x – 1)
⇒ 4x + 6 > 20x – 5
⇒ 4x – 20x > – 5 – 6
⇒ -16x > -11
⇒ x < (-11/-16) (Dividing by -16)
⇒ x < (11/16)
∴ x = 0
∴ Solution set = {0}
Selina Solutions – Linear Inequations, Exe-15 B for ICSE Class-8th Mathematics
Solve and graph the solution set on a number line :
Question 1.
x – 5 < -2 ; x ∈ N
Answer
x – 5 < -2
⇒ x – 5 + 5 < – 2 + 5 (Adding 5 to both sides)
⇒ x < 3
So required graph is:
Question 2.
3x – 1 > 5 ; x ∈ W
Answer
3x – 1 > 5
⇒ 3x – 1 + 1 > 5 + 1 (Adding 1 to both sides)
⇒ 3x > 6
⇒ 3x/3 > 6/3 (Dividing both sides by 3)
⇒ x > 2
So required graph is:
Question 3.
-3x + 12 < -15 ; x ∈ R.
Answer
3x + 12 < -15
⇒ -3x + 12 – 12 < – 15 -12 (Subtracting 12 from both sides)
⇒ -3x < -27
⇒ -3x-3>-27-3 (Dividing both sides by -3)
⇒ x > 9
So required graph is:
Question 4.
7 > 3x – 8 ; x ∈ W
Answer
7 ≥ 3x – 8
⇒ 7 + 8 ≥ 3x – 8 8 (Adding 8 to both sides)
⇒ 15 ≥ 3x
⇒ (15/3) ≥ (3x/3) (Dividing both sides by 3)
⇒ 5 ≥ x
So required graph is:
Question 5.
8x – 8 < – 24 ; x ∈ Z
Answer
8x – 8 ≤ – 24
⇒ 8x – 8 + 8 ≤ – 24 + 8 ..(Adding 8 to both sides)
⇒ 8x ≤ -16
⇒ (8x/8) ≤ (-16/8)
..(Dividing both sides by 8)
⇒ x ≤ -2
So required graph is:
Question 6.
8x – 9 > 35 – 3x ; x ∈ N
Answer
8x – 9 ≥ 35 – 3x
⇒ 8x + 3x – 9 ≥ 35 – 3x + 3x …(Adding 3x to both sides)
⇒ 11x – 9 ≥ 35
⇒ 11x – 9 + 9 ≥ 35 + 9 ..(Adding 9 to both sides)
⇒ 11x ≥ 44
⇒ (11x/11) ≥ (44/11) …(Dividing both side by 11)
⇒ x ≥ 4
So required graph is:
Question 7.
5x + 4 > 8x – 11 ; x ∈ Z
Answer
5x + 4 > 8x – 11
⇒ 5x – 5x + 4 > 8x – 5x – 11 ..(Subtracting 5x from both sides)
⇒ 4 > 3x – 11
⇒ 4 + 11 > 3x – 11 + 11 …(Adding 11 to both sides)
⇒ 15 > 3x
⇒ 15/3 > 3x/3
…(Dividing both sides by 3)
⇒ 5 > x
So required graph is:
Question 8.
+ 1 < -3 ; x ∈ R
Answer
(2x/5) +1<-3
⇒ (2x/5) +1-1<-3-1 (Subtracting 1 from both sides)
⇒ (2x/5)<-4
⇒ (2x/5)×5<-4×5 …(Multiplying both sides by 5)
⇒ 2x < – 20
⇒ (2x/2)<(-20/2) …(Dividing both sides by 2)
⇒ x < -10
So required graph is:
Question 9.
> -1 +
; x ∈ N
Answer
x/2 > -1+ (3x/4)
⇒ x/2 × 4 > -1 × 4 + (3x/4) × 4 ..(Multiplying both sides by 4)
⇒ 2x > -4 + 3x
⇒ 2x – 2x > – 4 + 3x – 2x …(Subtracting 2x from both sides)
⇒ 0 > – 4 + x
⇒ 0 + 4 > – 4 + 4 + x …(Adding 4 to both sides)
⇒ 4 > x
So required graph is:
Question 10.
x + 5 ≤
x + 6 ; x ∈ W
Answer
….(Multiplying both sides by 6)
⇒ 4x + 30 ≤ 3x + 36
⇒ 4x – 3x + 30 ≤ 3x – 3x + 36 …(Substracting 3x from both sides)
⇒ x + 30 ≤ 36
⇒ x + 30 – 30 ≤ 36 – 30 …(Substracting 30 from both sides)
x ≤ 6
So required graph is:
Question 11.
Solve the inequation 5(x – 2) > 4 (x + 3) – 24 and represent its solution on a number line.
Given the replacement set is {-4, -3, -2, -1, 0, 1, 2, 3, 4}.
Answer
5(x – 2) > 4 (x + 3) – 24
⇒ 5x – 10 > 4x + 12 – 24
⇒ 5x – 4x > 10 – 12
⇒ x > -2
Since replacement set ={-4, -3, -2, -1, 0, 1, 2, 3, 4}
∴ Solution set = {-1, 0, 1, 2, 3, 4}
So required graph is:
Question 12.
Solve (x – 1) + 4 < 10 and represent its solution on a number line.
Given replacement set is {-8, -6, -4, 3, 6, 8, 12}.
Answer
⇒ 2(x – 1) < 18
⇒ x – 1 < 9
⇒ x – 1 + 1 < 9 + 1 ….(Adding 1 to both sides)
⇒ x < 10

Thus x < 10
Since, replacement set = {-8, -6, -4, 3, 6, 8, 12}
⇒ Solution set = {-8, -6, -4, 3, 6, 8}
Question 13.
For each inequation, given below, represent the solution on a number line :
(i) – 2x ≥
; x ∈ W
(ii) 3(2x – 1) ≥ 2(2x + 3), x ∈ Z
(iii) 2(4 – 3x) ≤ 4(x – 5), x ∈ W
(iv) 4(3x + 1) > 2(4x – 1), x is a negative integer
(v) < 3, x ∈ R
(vi) -2(x + 8) ≤ 8, x ∈ R
Answer
(i)
∴ x = {0, 1}
(ii)
3(2x -1) ≥ 2(2x + 3), x ∈ Z
⇒ 6x – 3 ≥ 4x + 6, x ∈ Z
⇒ 6x – 4x ≥ 6 + 3
⇒ 2x ≥ 9
⇒ x ≥ 9/2
⇒ x ≥ 4 (1/2)
∴ x = {5, 6, 7, ….}
(iii)
2(4 – 3x) ≤ 4(x – 5), x ∈ W
8 – 6x ≤ – 20 – 8
⇒ -6x – 4x ≤ – 20 – 8
⇒ -10x ≤ – 28
⇒ 10x ≥ 28
⇒ x ≥ 28/10
⇒ x ≥ 2.8
∴ x = {3, 4, 5, ….}
(iv)
4(3x + 1) > 2(4x – 1), x is a negative integer
⇒ 12x + 4 > 8x – 2
⇒ 12x – 8x > -2 – 4
⇒ 4x > -6
⇒ x > -64
⇒ x > -1.5
∴ x = {-1}
(v)
(4-x/2) <3 , x ∈ R
⇒ 4 – x < 6
⇒ – x < 6 – 4
⇒ – x < 2
⇒ x > -2
∴ x > – 2
(vi)
-2(x + 8) ≤ 8, x ∈ R
– 2x – 16 ≤ 8
⇒ – 2x ≤ 8 + 16
⇒ – 2x ≤ 24
⇒ x ≥ -24/2
x ≥ -12
— End of Linear Inequations Solutions :–
Return to – Concise Selina Maths Solutions for ICSE Class -8