ML Aggarwal Linear Equations and Inequalities in One Variable Check Your progress Class 8 ICSE Ch-12 Maths Solutions. We Provide Step by Step Answer of  Check Your progress Questions for Linear Equations and Inequalities in One Variable as council prescribe guideline for upcoming board exam. Visit official Website CISCE for detail information about ICSE Board Class-8.

## ML Aggarwal Linear Equations and Inequalities in One Variable Check Your progress Class 8 ICSE Maths Solutions

 Board ICSE Publications Avichal Publishig Company (APC) Subject Maths Class 8th Chapter-12 Linear Equations and Inequalities in One Variable Writer ML Aggarwal Book Name Understanding Topics Solution of Check Your progress Questions Edition 2023-2024

### Linear Equations and Inequalities in One Variable Check Your progress

ML Aggarwal Class 8 ICSE Maths Solutions

Page-221

#### Answer:

Update soon

Linear Equations and Inequalities in One Variable Check Your progress

### ML Aggarwal Class 8 ICSE Maths Solutions

Page-222

#### Answer:

Let first multiple of 11 = 11x
Then second multiple = 11x + 11
and third multiple = 11x + 22
∴ 11x + 11x+ 11 + 11x + 22 = 363
⇒ 33x + 33 = 363
⇒ x + 1 = 11
⇒ x = 11 – 1 = 10
∴ Multiples are 11 × 10 = 110
110 + 11 = 121
110 + 22 = 132
Hence number are 110, 121, 132

#### Answer:

Sum of two numbers = 95
Let first number = x
Then second number = 95 – x
According to the condition,
x – (95 – x) = 15
⇒ x – 95 + x = 15
⇒ 2x = 15 + 95 = 110
⇒ x = 110/2 = 55
∴ First number = 55
and second = 95 – 55 = 40
Hence numbers are 55, 40

#### Answer:

Let, the first number be x
According to given problem,

x/2 = 1/3(x+1)
⇒ 3x = 2 (x + 1)
⇒ 3x = 2x + 2
⇒ 3x – 2x = 2 x = 2
Hence, the first number be 2.

#### Answer

Let denominator of a rational number = x
Then its numerator = x – 8
and fraction = (x-8)/x
According to the condition,

(x-8+2)/(x-1) = 1/2

(x-6)/(x-1) = 1/2
⇒ (x – 6) × 2 = x – 1
⇒ 2x – 12 = x – 1
⇒ 2x – x = 12 – 1
⇒ x = 11
∴ Fraction = (11-8)/11

= 3/11

#### Answer:

Ratio in the present ages of Rohit and Mayank = 11 : 8
Let Rohit’s age = 11x years
and Mayank’s age = 8x years
8 years later,
Rohit’s age = 11x + 8
and Mayank’s age = 8x + 8
According to the condition,
⇒ 11x + 8 + 8x + 8 = 54
⇒ 19x = 54 – 8 – 8 = 54 – 16 = 38
x = 38/19
∴ Rohit’s present age =11 × 2 = 22 years
and Mayank’s age = 8 × 2=16 years

#### Answer:

Let sum of ages of two sons = x years
Then fathers age = 3x years
5 years later
Sum of ages of two sons = x + 5 + 5 = x + 10 years
and father’s age = (3x + 5) years
According to the condition,
3x + 5 = 2(x + 10)
⇒ 3x + 5 = 2x + 20
⇒ 3x – 2x = 20 – 5
⇒ x = 15
∴ Father’s age = 3 × 15 = 45 years

#### Answer

Let unit’s digit = x
Then ten’s digit = x – 7
Number = x + 10(x – 7) = x + 10x – 70 = 11x – 70
After interchanged the digits,
Unit’s digit = x – 7
and ten’s digit = x
∴ Number = x – 7 + 10x = 11x – 7
According to the condition,
11x – 70 + 11x – 7 = 121
⇒ 22x – 77 = 121
⇒ 22x = 121 + 77 = 198
x = 198/22 = 9
∴ Original number = 11x – 70 = 11 × 9 – 70 = 99 – 70 = 29
Hence number is 29 or 92

#### Answer

Let, the digit at unit’s place = x
And, digit at ten’s place = x + 5
Number = 10 × (x + 5) + 1 × 5
= 10 (x + 5) + x
= 10x + 50 + x
= 11x + 50
Reversing the number = 1 × (x + 5) + 10 × x
= x + 5 + 10x = 11x + 5
According to given problem,
(11x + 50) + (11x + 5) = 99
⇒ 11x + 50 + 11x + 5 = 99
⇒ 22x + 55 = 99
⇒ 22x = 99 – 55
⇒ 22x = 44
⇒ x = 44/22
⇒ x = 2
Hence, the number = 11 × 2 + 50
= 22 + 50 = 72

#### Answer:

Total amount = ₹2,00,000
and total number of currency notes = 250
Let 500 rupees notes = x
Then 2000’s rupee notes = 250 – x
According to the condition,
x × 500 + (250 – x) × 2000 = 2,00,000
⇒ 500x + 5,00,000 – 2000x = 2,00,000
⇒ -1500x = 2,00,000 – 5,00,000
⇒ -1500x = -3,00,000
⇒ x = -300000/-1500

= 200
∴ 500 rupees notes = 200
and 2000 rupees notes = 250 – 200 = 50

Update soon

Update soon

#### Question 13. Solve the following inequality and graph its solution on a number line:

-(1/4) ≤ (1/2) – x/3 < 2, x ∈ I.

#### Answer:

Update soon

— End of Linear Equations and Inequalities in One Variable Check Your Progress Class 8 ICSE Maths Solutions :–

Return to : ML Aggarwal Maths Solutions for ICSE Class -8

Thanks

Share with your friends

You might also like
Leave a comment