ML Aggarwal Ratio and Proportion Exe-7.2 Class 10 ICSE Maths Solutions

ML Aggarwal Ratio and Proportion Exe-7.2 Class 10 ICSE Maths Solutions . We Provide Step by Step Answer of  Exe-7.2 Questions for Ratio and Proportion as council prescribe guideline for upcoming board exam.  Visit official Website  CISCE  for detail information about ICSE Board Class-10.

ML Aggarwal Ratio and Proportion Exe-7.2 Class 10 ICSE Maths Solutions

Board ICSE
Subject Maths
Class 10th
Chapter-7 Ratio and Proportion
Writer / Book Understanding
Topics Solutions of Exe-7.2
Academic Session 2024-2025

Ch-7, Ratio and Proportion Exe-7.2

ML Aggarwal Class 10 ICSE Maths Solutions

Question -1 Find the value of x in the following proportions :
(i) 10 : 35 = x : 42
(ii) 3 : x = 24 : 2
(iii) 2.5 : 1.5 = x : 3
(iv) x : 50 :: 3 : 2

Answer -1

(i) 10 : 35 = x : 42
⇒ 35 × x = 10 × 42

x = (10 × 42) / 35

x = 2 × 6,   x = 12

(ii) 3: x = 24: 2

x × 24 = 3 × 2

x = (3 × 2)/ 24

x = ¼

(iii) 2.5: 1.5 = x: 3

1.5 × x = 2.5 × 3

x = (2.5 × 3)/ 1.5

x = 5.0

(iv) x: 50 :: 3: 2

x × 2 = 50 × 3

x = (50 × 3)/ 2

x = 75

Question- 2 Find the fourth proportional to
(i) 3, 12, 15
(ii) 1/3,1/4,1/5
(iii) 1.5, 2.5, 4.5
(iv) 9.6 kg, 7.2 kg, 28.8 kg

Answer -2

(i) Let fourth proportional to
3, 12, 15 be x.
then 3 : 12 :: 15 : x

3 × x = 12 × 15

x = (12 × 15)/ 3

x = 60

(ii) 1/3, 1/4, 1/5

let  x is fourth proportional

1/3: 1/4:: 1/5: x

1/3 × x = 1/4 × 1/5

So we get

x = 1/4 × 1/5 × 3/1

x = 3/20

(iii) 1.5, 2.5, 4.5

let x is fourth proportional

1.5: 2.5 :: 4.5: x

1.5 × x = 2.5 × 4.5

x = (2.5 × 4.5)/ 1.5

x = 7.5

(iv) 9.6 kg, 7.2 kg, 28.8 kg

let x be fourth proportional

9.6: 7.2 :: 28.8: x

9.6 × x = 7.2 × 28.8

x = (7.2 × 28.8)/ 9.6

x = 21.6

Question -3 Find the third proportional to
(i) 5, 10
(ii) 0.24, 0.6
(iii) Rs. 3, Rs. 12
(iv) 21/4 and 7.

Answer -3

(i) Let x be the third proportional to 5, 10,
then 5 : 10 :: 10 : x

5 × x = 10 × 10

x = (10 × 10)/ 5 = 20

the third proportional to 5, 10 is 20.

(ii) let x be third proportional to 0.24, 0.6

0.24: 0.6 :: 0.6: x

0.24 × x = 0.6 × 0.6

x = (0.6 × 0.6)/ 0.24 = 1.5

the third proportional to 0.24, 0.6 is 1.5.

(iii) let x be third proportional to Rs. 3 and Rs. 12

3: 12 :: 12: x

3 × x = 12 × 12

x = (12 × 12)/ 3 = 48

the third proportional to Rs. 3 and Rs. 12 is Rs. 48

(iv) let x as the third proportional to 5 ¼ and 7

5 ¼: 7 :: 7: x

21/4 × x = 7 × 7

x = (7 × 7 × 4)/ 21 = 28/3 = 9 1/3

Question- 4 Find the mean proportion of:

(i) 5 and 80

(ii) 1/12 and 1/75

(iii) 8.1 and 2.5

(iv) (a – b) and (a3 – a2b), a ˃ b

Answer -4

(i) let x as the mean proportion of 5 and 80

5: x :: x: 80

x2 = 5 × 80 = 400

x = √400 = 20

so mean proportion of 5 and 80 is 20.

(ii) let x is mean proportion of 1/12 and 1/75

1/12: x :: x: 1/75

x2 = 1/12 × 1/75 = 1/900

x = √1/900 = 1/30

So, mean proportion of 1/12 and 1/75 is 1/30.

(iii) let x is mean proportion of 8.1 and 2.5

8.1: x :: x: 2.5

x2 = 8.1 × 2.5 = 20.25

x = √20.25 = 4.5

So mean proportion of 8.1 and 2.5 is 4.5.

(iv) let x as the mean proportion of (a – b) and (a3 – a2b), a ˃ b

(a – b): x :: x:(a3 – a2b)

x2 = (a – b) (a3 – a2b)

x2 = (a – b) a2 (a – b)

x2 = a2 (a – b)2

x = a (a – b)

Hence, mean proportion is a (a – b).

Question -5 If a, 12, 16 and b are in continued proportion find a and b.

Answer- 5 ∵ a, 12, 16, b are in continued proportion, then

a/12 = 12/16 = 16/b

a/12 = 12/16

16a = 144 (By cross multiplication)

a = 144/16 = 9

and 12/16 = 16/b

12b = 16 × 16 = 256 (By cross multiplication)

b = 256/12 = 64/3 = 21 1/3

Hence, a = 9 and b = 64/3 or 21 1/3.


Ch-7, Ratio and Proportion Exe-7.2 

ML Aggarwal Class 10 ICSE Maths Solutions

Page-126

Question- 6 What number must be added to each of the numbers 5, 11, 19 and 37 so that they are in proportion ? (2009)

Answer- 6

Let x be added to 5, 11, 19 and 37 to make them in proportion.
5 + x : 11 + x : : 19 + x : 37 + x

(5 + x) (37 + x) = (11 + x) (19 + x)

185 + 5x + 37x + x2 = 209 + 11x + 19x + x2

185 + 42x + x2 = 209 + 30x + x2

42x – 30x + x2 – x2 = 209 – 185

12x = 24

x = 2

Question- 7 What number should be subtracted from each of the numbers 23, 30, 57 and 78 so that the remainders are in proportion ? (2004)

Answer- 7

Let x be subtracted from each term, then
23 – x, 30 – x, 57 – x and 78 – x are proportional
23 – x : 30 – x : : 57 – x : 78 – x

(23 – x)/ (30 – x) = (57 – x)/ (78 – x)

(23 – x) (78 – x) = (30 – x) (57 – x)

1794 – 23x – 78x + x2 = 1710 – 30x – 57x + x2

x2 – 101x + 1794 – x2 + 87x – 1710 = 0

– 14x + 84 = 0

14x = 84

x = 84/14 = 6

Question-8 The following numbers, K + 3, K + 2, 3K – 7 and 2K – 3 are in proportion. Find k (2019)

Answer-8

(K + 3) / (K + 2) =  (3K – 7) / (2K – 3 )

⇒ (K + 3) (2K – 3) = (K + 2) (3K – 7).
⇒ 2K2 – 3K + 6K – 9 = 3K– 7K + 6K – 14
⇒ K2 – 4K – 5 = 0
⇒ (K – 5) (K + 1) = 0
⇒ K = 5 or K = – 1

Question- 9 If x + 5 is the mean proportion between x + 2 and x + 9, find the value of x.

Answer -9

∵ x + 5 is the mean proportion between x + 2 and x + 9, then
(x + 5)² = (x + 2) (x + 9)
⇒ x² + 10x + 25 = x² + 11x + 18,

and ⇒ x² + 10x – x² – 11x = 18 – 25
so ⇒ – x = – 7
∵ x = 7 Ans.

Question- 10 What number must be added to each of the numbers 16, 26 and 40 so that the resulting numbers may be in continued proportion?

Answer -10

Let x be added to each number then
16 + x, 26 + x and 40 + x
are in continued proportion.

(16 + x)/ (26 + x) = (26 + x)/ (40 + x)

(16 + x) (40 + x) = (26 + x) (26 + x)

640 + 16x + 40x + x2 = 676 + 26x + 26x + x2

640 + 56x + x2 = 676 + 52x + x2

56x + x2 – 52x – x2 = 676 – 640

4x = 36

x = 36/4 = 9

Question -11 Find two numbers such that the mean proportional between them is 28 and the third proportional to them is 224.

Answer- 11

Let the two numbers are a and b.
∵ 28 is the mean proportional
∵ a : 28 : : 28 : b

ab = 282 = 784

Here a = 784/b …… (1)

224 is the third proportional

a: b :: b: 224

b2 = 224a ….. (2)

substituting the value of a in equation (2)

b2 = 224 × 784/b

b3 = 224 × 784

b3 = 175616 = 563

b = 56

substituting the value of b in equation (1)

a = 784/56 = 14

Hence 14 and 56 are the two numbers.

Question- 12 If b is the mean proportional between a and c, prove that a, c, a² + b², and b² + c² are proportional.

Answer- 12

∵ b is the mean proportional between a and c, then,
b² = a × c ⇒ b² = ac …(i)

a, c, a2 + b2 and b2 + c2 are in proportion

a/c = (a2 + b2)/ (b2 + c2)

a (b2 + c2) = c (a2 + b2)

Using equation (1)

a (ac + c2) = c (a2 + ac)

ac (a + c) = a2c + ac2

Here ac (a + c) = ac (a + c)

Question -13 If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a² + b²) and (b² + c²).

Answer -13

b is the mean proportional between a and c then
b² = ac …(i)
Now if (ab + bc) is the mean proportional

(ab + bc)2 = (a2 + b2) (b2 + c2)

Consider LHS = (ab + bc)2

on Expanding

= a2b2 + b2c2 + 2ab2c

equation (1)

= a2 (ac) + ac (c)2 + 2a. ac. c

= a3c + ac3 + 2a2c2

by Taking ac as common

= ac (a2 + c2 + 2ac)

= ac (a + c)2

RHS = (a2 + b2) (b2 + c2)

Using equation (1)

= (a2 + ac) (ac + c2)

Taking common

= a (a + c) c (a + c)

= ac (a + c)2

Hence, LHS = RHS

Question -14 If y is mean proportional between x and z, prove that  xyz (x + y + z)³ = (xy + yz + zx)³.

Answer- 14

∵ y is the mean proportional between
x and z, then
y² = xz …(i)

LHS = xyz (x + y + z)3

= xz. y (x + y + z)3

Using equation (1)

= y2 y (x + y + z)3

= y3 (x + y + z)3

= [y (x + y + z)]3

= (xy + y2 + yz)3

Using equation (1)

= (xy + yz + zx)3

= RHS

Question -15 If a + c = mb and 1/b + 1/d = m/c, prove that a, b, c and d are in proportion.

Answer -15

a + c = mb and 1/b + 1/d = m/c

a + c = mb

Dividing the equation by b

a/b + c/d = m ……. (1)

1/b + 1/d = m/c

Multiplying the equation by c

c/b + c/d = m …… (2)

Using equation (1) and (2)

a/b + c/b = c/b + c/d

So we get

a/b = c/d

Question- 16  If x/a = y/b = z/c, prove that

(i)   x³/a² +y³/b² +z³/c² =(x+y+z)³/(a+b+c)²

(ii)
 ratio and proportion ml class 10 exercise 7.2 ques 16 bb

(iii)

ratio and proportion ml class 10 exercise 7.2 ques 16 cc
Answer -16

(i) let x/a = y/b = z/c   = k  ∴ x = ak, y = bk, z = ck

ml classs 10 matrices exercise 7.2 question 16a

(ii)

ratio and proportion ml class 10 exercise 7.2 ques 16 b

 

ml classs 10 matrices exercise 7.2 question 16c

Question- 17 If a/c=c/d=c/f  prove that :

(i) (b² + d² + f²) (a² + c² + e²) = (ab + cd + ef)²

(ii) (a³+c³)² /(b³+d³)² =(e³)² / (f³)²

(iii) a²/b² +c²/d² +e²/f² =ac/bd +ce/df +ae/df

(iv) bdf[(a+b)/b +(c+d)/d +(c+f)/f]³ =27(a+b)(c+d)(e+f)

Answer -17

a/b = c/d = e/f = k

a = bk, c = dk, e = fk

(i) LHS = (b2 + d2 + f2) (a2 + c2 + e2)

= (b2 + d2 + f2) (b2k2 + d2k2 + f2k2)

Taking out the common terms

= (b2 + d2 + f2) k2 (b2 + d2 + f2)

= k2 (b2 + d2 + f2)

RHS = (ab + cd + ef)2

= (b. kb + dk. d + fk. f)2

So we get

= (kb2 + kd2 + kf2)

Taking out common terms

= k2 (b2 + d2 + f2)2

Therefore, LHS = RHS.

(ii)

Ans-17.1 ml class 10 proportion

(iii)

=  k²+ k²+ k²

=3k²

(iv)

Ans-17.4 ml class 10 proportion

= bdf(k + 1 + k + 1 + k + 1)3
= bdf(3k + 3)3 = 27bdf(k + 1)3
R.H.S. = 27(a + b)(c + d)(e + f)
= 27(bk + b)(dk + d)(fk + f)
= 27b(k + 1)d(k + 1)f(k + 1)
= 27bdf(k + 1)3
∴ L.H.S. = R.H.S.

Question -18 If ax = by = cz; prove that
 x² / yz + y² / zx + z² / xy =bc / a² + ca / b² + ab / c²

Answer -18

Let ax = by = cz = k

x = k/a, y = k/b, z = k/c

Ans-18 ml class 10 proportion

Question- 19 If a, b, c and d are in proportion, prove that:
(i) (5a + 7b) (2c – 3d) = (5c + 7d) (2a – 3b)
(ii) (ma + nb) : b = (mc + nd) : d
(iii) (a4 + c4) : (b4 + d4) = a2 c2 : b2 d2.

ratio and proportion ml class 10 exercise 7.2 ques 19

Answer -19 

a, b, c, d are in proportion

Consider a/b = c/d = k

a = b, c = dk

(i) LHS = (5a + 7b) (2c – 3d)

Substituting the values

= (5bk + 7b) (2dk – 3d)

= k (5b + 7b) k (2d – 3d)

= k2 (12b) (-d)

= – 12 bd k2

RHS = (5c + 7d) (2a – 3b)

Substituting the values

= (5dk + 7d) (2kb – 3b)

= k (5d + 7d) k (2b – 3b)

= k2 (12d) (-b)

= – 12 bd k2

Therefore, LHS = RHS.

ml classs 10 matrices exercise 7.2 question 19 b
Therefore, LHS = RHS.

(iii)( a4 + c4): (b4 + d4) = a2c2: b2d2

L.H.S.=  (a4 + c4)/ (b4 + d4)

= (k4b4 + k4d4) / (b4 + d4)
= k (b4 + d4) / (b4 + d4)

= k
R.H.S. =a2c2/ b2d2
=      k2b2 . k2d/ b2d2

= k

Hence L.H.S. = R.H.S.

(iv)

Ans-19.4 ml class 10 proportion

Hence L.H.S. = R.H.S.

(v) ∵ a, b, c, d are in proportion
ab=cd = k(say)
a = bk, c = dk.
L.H.S. = (a+c)³/(b+d)³

= (bk+dk)³ /(b+d)³

= k³(b+d)³ /(b+d)²
= k3
R.H.S. = a(a-c)² /b(b-d)²

= bk(bk-dk)²/  b(b-d)²

= bk.k²(b-d)²/b(b-d)²
= k3
∴ L.H.S. = R.H.S.

(vi)

Ans-19.6 ml class 10 proportion

∴ L.H.S. = R.H.S.

(vii)

ml class 10 proportion Ans-19.7

∴ L.H.S. = R.H.S.

(viii)

ml class 10 proportion Ans-19.8

= d2(1 + k2) + b2(1 + k2)
= (1 + k2)(b2 + d2)
R.H.S. = a2 + b2 + c2 + d2
= b2k2 + b+ d2k2 + d2
= b2(k2 + 1) + d2(k2 + 1)
= (k2 + 1)(b2 + d2)
∴ L.H.S. = R.H.S.


Ch-7, Ratio and Proportion Exe-7.2 

ML Aggarwal Class 10 ICSE Maths Solutions

Page-127

Question- 20 If x, y, z are in continued proportion, prove that:(x+y)²/(y+z)² =x/z. (2010)

Answer -20

x, y, z are in continued proportion

Let x/y = y/z = k

Then y = kz

x = yk = kz × k

= k2z

Now L.H.S = (x + y)2/(y + z)2

= (k2z + kz)2/(kz + z)2

= {kz(k + 1)}2/{z(k + 1)}2

= {k2z2(k + 1)2}/{z2(k + 1)2}

= k2

R.H.S. = x/z = k2z/z

= k3

∴ L.H.S. = R.H.S.

Question- 21 If a, b, c are in continued proportion, prove that:
(pa² + qab +rb²)/(pb² + qbc + rc²)=a/c

Answer -21

Given a, b, c are in continued proportion (pa2 + qab + rb2)/(pb2 + qbc + rc2) = a/c

Let a/b = b/c = k

⇒ a = bk and b = ck …(i)

⇒ a = (ck)k = ck2 [Using (i)]

and, b = ck

L.H.S = a/c = ck2/c = k2

R.H.S. = {p(ck2)2 + q(ck2)ck + r(ck)2}/(p(ck)2 + q(ck)c + rc2)

= (pc2k4 + qc2k3 + rc2k2)/(pc2k+ qc2k + rc2)

= (c2k2)/c2[(pk2 + qk + r)/(pk2 + qk + r)]

= k2 …(iii)

From (ii) and (iii), L.H.S. = R.H.S

∴ b = ck, a = bk, ckk = ck2

(i) L.H.S = (a + b)/(b + c)

= (a + b)/(b + c)

= (ck2 + ck)/(ck + c)

= {ck(k + 1)}/{c(k + 1)}

= k

R.H.S = {a2(b – c)}/{b2(a – b)}

= (ck2)2(ck – c)}/{(ck)2(ck2 – ck)}

= {c2k4c(k – 1)}/{c2k2 ck(k – 1)}

Question- 22 If a, b, c are in continued proportion, prove that:

ratio and proportion ml class 10 exercise 7.2 ques 22

Answer -22

(i) As a, b, c are in continued

Let a/b = b/c = k

= {c3k4(k – 1)}/{c3k3(k – 1)}

= k

∴ L.H.S. = R.H.S

(ii) L.H.S = 1/a3 + 1/b3 + 1/c3

= 1/(ck2)3 + 1/(ck)3 + 1/c3

= 1/(c3k6) + 1/(c3k3) + 1/c3

= 1/c3[1/k6 + 1/k3 + 1/1]

R.H.S = a/(b2c2) + b/(c2a2)+ c/(a2b2)

= (ck2)/(ck2)c2 + ck/{(c2(ck2)2} + c/(ck2)2 (ck)2

= {ck2/(ck2)c2} + {ck/c2(ck2)2} + {c/(ck2)2 (ck)2}

= ck2/(c4k2) + ck/(c4k4) + c/(c4k6)

= 1/c3 + 1/(c3k3) + 1/(c3k6)

= 1/c3[1 + 1/k3 + 1/k6]

= 1/c3[1/k6 + 1/k3 + 1]

∴ L.H.S. = R.H.S.

(iii) a : c = (a2 + b2) : (b2 + c2)

⇒ a/c = (a2 + b2)/(b2 + c2)

L.H.S = a/c = (ck2)/c = k2

R.H.S. = {(ck2)+ (ck)2}/(c2k+ c2)

= (c2k4 + c2k2)/(c2k2 + c2)

= {c2k2(k+ 1)}/{c2(k2 + 1)}

= k2

∴ L.H.S. = R.H.S.

(iv) L.H.S.= a2b2c2 (a-4 + b-4 + c-4)

= a2b2c2[1/a4 + 1/b4 + 1/c4]

= (a2b2c2)/a4 + (a2b2c2)/b4 + (a2b2c2)/c4

= (b2c2)/a2 + (c2a2)/b2 + (a2b2)/c2

= {(ck)2.c2}/(ck2)2 + {c2(ck2)2}/(ck)2 + {(ck2)2(ck)2}/c2

= (c2k2.c2)/(c2k4) + (c2.c2k4)/(c2k2) + (c2k4.c2k2)/c2

= c2/k2 + (c2k2)/1 + (c2k6)/1

= c2[1/k2 + k+ k6]

= c2\k2[1 + k4 + k8]

R.H.S = b-2[a4 + b4 + c4]

= 1/b2[a4 + b4 + c4]

= 1/(ck)2 [(ck2)4 + (ck)4 + c4]

= 1/(c2k2)[c4k8 + c4k4 + c4]

= c4/(c2k2)[k8 + k4 + 1]

= c2/k2 [1 + k4 + k8]

∴ L.H.S. = R.H.S.

(v) L.H.S. = abc (a + b + c)3

= ck2.ck.c[ck2 + ck + c]3

= c3k3[c(k2 + k + 1)]3

= c2k3.c3.(k2 + k + 1)3

= c6k3(k2 + k + 1)3

R.H.S = (ab + bc + ca)3

= (ck2.ck + ck.c + c.ck2)3

= (c2k3 + c2k + c2k2)3

= (c2k3 + c2k2 + c2k)3

= [c2k(k2 + k + 1)]3

= c6k3(k2 + k + 1)3

∴ L.H.S. = R.H.S.

(vi) L.H.S. = (a + b + c) (a – b + c)

= (ck2 + ck + c)(ck2 – ck + c)

= c(k2 + k + 1)c(k2 – k + 1)

= c2(k2 + k + 1)(k2 – k + 1)

= c2(k4 + k2 + 1)

R.H.S = a+ b2 + c2

= (ck2)2 + (ck)2 + (c)2

= c2k4 + c2k2 + c2

= c2(k+ k+ 1)

∴ L.H.S. = R.H.S.

Question- 23 If a, b, c, d are in continued proportion, prove that:

ratio and proportion ml class 10 exercise 7.2 ques 23

Answer- 23 a, b, c, d are in continued proportion

∴ a/b = b/c + c/d = k(say)

∴ c = dk, b = ck = dk.k = dk2,

a = bk = dk2.k = dk3

(i) L.H.S. = (a3 + b3 + c3) / (b3 + c3 + d3)

= {(dk3)3 + (dk2)3 + (dk)3}/{(dk)2)3 + (dk)3 + d3}

= (d3k+ d3k6 + d3k3)/(d3k6 + d3k+ d3)

= {d3k3(k+ k+ 1)}/{d3(k+ k3 + 1)}

= k3

R.H.S. = a/d = (dk3)/d = k3

∴ L.H.S. = R.H.S.

(ii) L.H.S = (a2 – b2)(c2 – d2)

= [(dk3)2 – (dk2)2][(dk)2 – d2]

= (d2k6 – d2k4)(d2k2 – d2)

= d2k4(k2 – 1)d2(k2 – 1)

= d4k4(k2 – 1)2

R.H.S. = (b2 – c2)2

= [(dk2)2 – (dk)2]2

= [d2k4 – d2k2]2

= [d2k2(k2 – 1)]2

= d4k4(k– 1)1

∴ L.H.S. = R.H.S.

(iii) L.H.S = (a + d)(b + c) – (a + c)(b + d)

= (dk3 + d)(dk2 + dk) – (dk3 + dk)(dk2 + d)

= d(k3 + 1)dk(k + 1) – dk(k2 + 1)d

= d2k(k + 1)(k3 + 1) – d2k(k2 + 1)(k2 + 1)

= d2k[k4 + k3 + k + 1 – k4 – 2k2 – 1]

= d2k [k3 – 2k2 + k]

= d2k[k– 2k + 1]

= d2k2(k – 1)2

R.H.S. = (b – c)2

= (dk2 – dk)2

= d2k2(k – 1)2

∴ L.H.S. = R.H.S.

(iv) a : d = triplicate ratio of (a – b) : (b – c)

= (a – b)3 : (b – c)3

L.H.S. = a : d = a/d = dk3/d = k3

R.H.S = (a – b)3/(b – c)3

= {(dk3 – dk2)3}/(dk2 – dk)3

= d3k6(k – 1)3/d3k3(k – 1)3

= k3

∴ L.H.S. = R.H.S.

(v) L.H.S. = {(a – b) / c + (a – c)/b} – {(d – b)/c + (d – c)/b}2

= {(dk3 – dk2)/dk} + {(dk3 – dk)/dk2}2 – {(d – dk2)/dk + (d – dk)/dk2}2

= {(dk2(k – 1)/dk + dk(k2 – 1)/dk2)}– {d (1 – k2)/dk + d(1 – k)/dk2}2

= {k(k – 1) + (k2 – 1)/k}2 – {(1 – k2)/k + (1 – k)/k2}2

= {k2(k – 1) + (k2 – 1)/k}2 – {(k – k2 + 1 – k)2}/k2

= {(k– k2 + k– 1)/k}2 – {(k – k3 + 1 – k)/k2}2

= {(k3 – 1)2}/k– {(- k3 + 1)2}/k4

= {(k3 – 1)2}/k2 – {(1 – k3)2}/k4

= {(k– 1)/k2}(1 – 1/k2)

= {(k– 1)/k2}2 {(1 – 1/k2)}

= {(k3 – 1)2(k2 – 1)}/k4

= {(k3 – 1)2(k2 – 1)}/k4

= {(k3 – 1)2(k2 – 1)}/k4

R.H.S. = (a – d)2(1/c2 – 1/b2)

= (dk3 – d)2 {(1/(d2k2) – 1/(d2k4)}

= d2(k3 – 1)2 (k2 – 1)/(d2k4)

= {(k3 – 1)2(k2 – 1)}/k4

∴ L.H.S. = R.H.S.

—  : End of ML Aggarwal Ratio and Proportion Exe-7.2 Class 10 ICSE Maths Solutions: –

Return to :- ML Aggarwal Solutions for ICSE Class-10

Thanks

Please Share with Your Friends

1 thought on “ML Aggarwal Ratio and Proportion Exe-7.2 Class 10 ICSE Maths Solutions”

  1. In question number 20, there’s an error in the end part of the proving. Where it should have been k^2, it’s k^3. Plus can u also do it using y^2=xz

    Reply

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

error: Content is protected !!