ML Aggarwal Ratio and Proportion Exe-7.3 Class 10 ICSE Maths Solutions

ML Aggarwal Ratio and Proportion Exe-7.3 Class 10 ICSE Maths Solutions . We Provide Step by Step Answer of Exe-7.3 Questions for Ratio and Proportion as council prescribe guideline for upcoming board exam. Visit official Website  CISCE  for detail information about ICSE Board Class-10.

ML Aggarwal Ratio and Proportion Exe-7.3 Class 10 ICSE Maths Solutions

Board ICSE
Subject Maths
Class 10th
Chapter-7 Ratio and Proportion
Writer / Book Understanding
Topics Solutions of Exe-7.3
Academic Session 2024-2025

Ratio and Proportion Exe-7.3

ML Aggarwal Class 10 ICSE Maths Solutions

Question -1 If a : b : : c : d, prove that

(i) (2a + 5b)/(2a – 5b) = (2c + 5d)/(2c – 5d)

(ii) (5a + 11b)/(5c + 11d) = (5a – 11b)/(5c – 11d)

(iii) (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)

(iv) (la + mb) : (lc + mb) : : (la – mb) : (lc – mb)

Answer- 1

(i) a : b : : c : d

Then a/b = c/d

⇒ 2a/5b = 2c/5d (Multiplying by 2/5)

Applying componendo and dividendo,

(2a + 5b)/(2a – 5b) = (2c + 5d)/(2c – 5d)

(ii) ∵ a : b : : c : d

∴ a/b = c/d

⇒ 5a/11b = 5c/11d (Multiplying by 5/11)

Applying componendo and dividendo,

(5a + 11b)/(5a – 11b) = (5c + 11d)/(5c – 11d)

⇒ (5a + 11b)/(5c + 11d) = (5c + 11b)/(5c – 11d) (Applying alternedo)

(iii) ∵ a : b : : c : d

∴ a/b = c/d ⇒ 2a/3b = 2c/3d (Multiplying by 2/3)

Applying componendo and dividendo,

(2a + 3b)/(2a – 3b) = (2c + 3d)/(2c – 3d)

⇒ (2a + 3b)(2c – 3d)

= (2a – 3b)(2c + 3d) (By cross multiplication)

(iv) ∵ a : b : : c : d

∴ a/b = c/d

⇒ la/mb = lc/md (Multiplying by l/m)

Applying componendo and dividendo,

(la + mb)/(la – mb) = (lc + md)/(lc – md)

⇒ (la + mb)/(lc + md) = (la – mb)/(lc – md) (By alternedo)

⇒ (la + mb) : (lc + md) : : (la – mb) : (lc – md)

Question -2

 (i) If( 5x+7y)/5u+7v)=(5x-7y)/(5u-7v) , Show that x/y=a/b
(ii)  if (8a – 5b)/(8c – 5d) = (8a + 5b)/(8c + 5d), prove that a/b=c/d

Answer- 2

(i) (5x + 7y)/(5u + 7v) = (5x – 7y)/(5u – 7v)

Applying alternedo,

(5x + 7y)/(5u + 7y) = (5x – 7y)/(5u – 7v)

Applying componendo and dividendo

⇒ (5x + 7y + 5x – 7y)/(5x + 7y – 5x + 7y) = (5u + 7v + 5u – 7v)/(5u + 7u – 5u + 7v)

⇒ 10x/14y = 10u/14v (Dividing both sides14/10)

⇒ x/y = u/v

Hence proved.

(ii) (8a – 5b)/(8c – 5d) = (8a + 5b)/(8c + 5d)

⇒ (8a + 5b)/(8a – 5b) = (8c + 5d)/(8 – 5d) (using alternedo)

Applying compoundo and dividendo,

(8a + 5b + 8a – 5b)/(8a + 5b – 8a + 5b) = (8c + 5d + 8c – 5c)/(8c + 5d – 8c + 5d)

∴ 16a/10b = 16c/10d

⇒ a/b = c/d (Dividing by 16/10)

Hence, proved.

Question- 3 If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proportion.

Answer- 3

(4a + 5b)(4c – 5d) = (4a – 5d)(4c + 5d)

⇒ (4a + 5b)/(4a – 5b) = (4c + 5d)/(4c – 5d)

Applying componendo and dividendo

(4a + 5b + 4a – 5b)/(4a + 5b – 4a + 5b) = (4c + 5d + 4c – 5d)/(4c + 5d – 4c + 5d)

⇒ 8a/10b = 8c/10d

⇒ a/b = c/d

Hence, a, b, c are in proportion.

Question -4 If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d

Answer- 4

(pa + qb) : (pc + qd) : : (pa – qb) : (pc – qd)

⇒ (pa + qb)/(pc + qd) = (pa – qb)/(pc – qd)

⇒ (pa + qb)/(pa – qd) = (pc + qd)/(pc – qd)

Applying componendo and dividendo

⇒ (pa + qb + pa – qb)/(pa + qb – pa + qb) = (pc + qd + pc – qd)/(pc – qd – pc + qd)

⇒ (2 pa)/(2 qb) = (2pc)/(2qd)

⇒ a/b = c/d (Dividing by 2p/2q)

Hence a : b : : c = d


Ratio and Proportion Exe-7.3

ML Aggarwal Class 10 ICSE Maths Solutions

Question -5 If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.

Answer- 5

(ma + nb) : b : : (mc + nd) : d

⇒ (ma + nb)/b = (mc + nd)/d

⇒ mad + nbd = mbc + nbd

⇒ mad = mbc

⇒ ad = bc

⇒ a/b = c/d

Hence a : b : : c : d.

Question -6 If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.

Answer -6

(11a2 + 13b2)(11c2 – 13d2) = (11a– 13b2)(11c2 + 13d2)

⇒ (11a2 + 13b2)/(11a2 – 13b2) = (11c+ 13d2)/(11c2 – 13d2)

Applying componendo and dividendo

(11a2 + 13b2 + 11a2 – 13b2)/(11a2 + 13b2 – 11a+ 13b2) = (11c2 + 13d2 + 11c2 – 13d2)/(11c2 + 13d– 11c2 + 13d2)

⇒ (22a2/26b2) = (22c2/26d2)

⇒ a2/b= c2/d (Dividing by 22/26)

⇒ a/b = c/d

Hence a : b : : c : d

Question -7 if x=2ab/(a+b )find the value of (x+a) / (xa)   +   (x+b)/(xb)

Answer-7

x = 2ab/(a + b)

⇒ x/a = 2b(a + b)

Applying componendo and dividendo

(x + a)/(x – a)

= (2b + a + b)/(2b – a – b)

= (3b + a)/(b – a) …(i)

Again x/b = 2a/(a + b)

Applying componendo and dividendo,

(x + b)/(x – b)

= (2b + a + b)/(2b – a – b)

= (3b + a)/(b – a) ….(ii)

Adding (i) and (ii)

(x + a)/(x – a) + (x + b)/(x – b)

= (3a + a)/(b – a) + (3a + b)/(a – b)

= -(a + 3b)/(a – b) + (3a + b)/(a – b)

= (- a – 3b + 3a + b)/(a – b)

= (2a – 2b)/(a – b)

= 2(a – b)/(a – b)

= 2

Question-8  if x=8ab/(a+b) find the value of (x+4a)/(x4a)+(x+4b)/(x4b)

Answer-8

x = 8ab/(a + b)

⇒ x/4a = 2b/(a + b)

Applying componendo and dividendo,

(x + 4a)/(x – 4a)

= (2b + a + b)/(2b – a – b)

= (3b + a)/(b – a) …(i)

Again,

x/4b = 2a/(a + b)

Applying componendo and dividendo,

(x + 4b)/(x – 4b)

= (2a + a + b)/(2a – a – b)

= (3a + b)/(a – b) …(ii)

Adding (i) and (ii)

(x + 4a)/(x – 4a) + (x + 4b)/(x – 4b)

= (3b + a)/(b – a) + (3a + b)/(a – b)

= -(a + 3b)/(a – b)+ (3a + b)/(a – b)

= -(a – 3b + 3a + b)/(a – b) + (2a – 2b)/(a – b)

= 2(a – b)/(a – b)

= 2

Question-9 If x = (4√6)/(√2 + √3) find the value of( x + 2√2)/(x – 2√2) + (x + 2√3)/(x – 2√3)

Answer -9

x = (4√6)/(√2 + √3)

⇒ x = (4√2 ×√3)/(√2 + √3)

⇒ x/(2√2) = 2√3/(√2 + √3)

Applying componendo and dividendo,

(x + 2√2)/(x – 2√2) = (2√3 + √2 + √3)/(2√3 – √2 – √3)

= (3√3 + √2)/(√3 – √2) …(i)

Again x/(2√3) = (2√2)/(√2 + √3)

Applying componendo and dividendo,

(x + 2√3)/(x – 2√3) = (2√2 + √2 + √3)/(2√2 – √2 – √3)

= (3√2 + √3)/(√2 – √3) …(ii)

Adding (i) and (ii),

(x + 2√2)/(x – 2√2) + (x + 2√3)/(x – 2√3)

= (3√3 + √2)/(√3 – √2) + (3√2 + √3)/( √2 – √3)

= (3√3 + √2)/( √3 – √2) – (3√2 + √3)/(√3 – √2)

= (3√3 + √2 – 3√2 – √3)/( √3 – √2)

= (2√3 – 2√2)/(√3 – √2)

= 2(√3 – √2)/(√3 – √2)

= 2

Question -10 Using properties of proportion ,find x from the following equations 

ratio and proportion ml class 10 exercise 7.3 ques 10a

(iv)

Ratio proportion ml aggarwal class 10 exe-7.3 Q-10.4

(v)

ratio and proportion ml class 10 exercise 7.3 ques 10e

(vi)

Answer -10

Ratio nd proportion ml aggarwal class 10 exe-7.3 ans 10.1

Ratio nd proportion ml aggarwal class 10 exe-7.3 ans 10.2

Ratio nd proportion ml aggarwal class 10 exe-7.3 ans 10.3

(iv)

 

(v)Ratio nd proportion ml aggarwal class 10 exe-7.3 ans 10.4

ml classs 10 matrices exercise 7.3 question 10e

(vi)

Ratio nd proportion ml aggarwal class 10 exe-7.3 Ans-10.6


Ratio and Proportion Exe-7.3

ML Aggarwal Class 10 ICSE Maths Solutions

Page-135

Question -11 Using properties of proportion, solve for x. Given that x is positive

(i)

 ml classs 10 matrices exercise 7.3 question 11a

(ii)

Ratio proportion ml aggarwal class 10 exe-7.3 Q-11.2 

Answer -11

(i)

ml classs 10 matrices exercise 7.3 question 11a

(ii)

Ratio nd proportion ml aggarwal class 10 exe-7.3 Ans-11.2

Question-12 Solve (1 + x + x2)/(1 – x + x2) = {62(1 + x)}/{63(1 – x)}

Answer-12

(1 + x + x2)/(1 – x + x2) = {62(1 + x)}/{63(1 – x)}

⇒ (1 – x)(1 + x + x2)/(1 + x)(1 – x + x2) = 62/63

⇒ (1 + x3)/(1 – x3) = 63/62

Applying componendo and dividendo,

(1 + x3 + 1 – x3)/(1 + x3 – 1 + x3) = (63 + 62)/(63 – 62)

⇒ 2/(2x3) = 125/1

⇒ 1/x3 = 125/1

⇒ x3 = 1/125 = (1/5)3

∴ x = 1/5

Question -13 Solve for x : 16{(a – x)/(a + x)}3 = (a + x)/(a – x)

Answer-13

x : 16{(a – x)/(a + x)}3 = (a + x)/(a – x)

⇒ (a + x)/(a – x) × {(a + x)/(a – x)}= 16

⇒ {(a + x)/(a – x)}4 = 16(±2)4

⇒ (a + x)/(a – x) = ±2

When (a + x)/(a – x) = 2/1

Applying componendo and dividendo,

(a + x + a – x)/(a + x – a + x) = (2 + 1)/(2 – 1)

⇒ 2a/2x = 3/1

⇒ a/x = 3/1

⇒ 3x = a

∴ x = a/3

When (a + x)/(a – x) = -2/1

Applying componendo and dividendo,

(a + x + a – x)/(a + x – a + x) = (- 2 + 1)/(- 2 – 1)

⇒ 2a/2x = – 1/-3

⇒ a/x = 1/3

⇒ x = 3a

Hence x = a/3, 3a

Question-14  If x = ⌈√(a+1) + √(a-1) ⌉  / ⌈√(a+1) – √(a-1) ,   using properties of proportion , show that x² – 2ax + 1 = 0      (2012)

Answer-14

ml classs 10 matrices exercise 7.3 question 14

Applying componendo and dividendo,

⇒ (x + 1)2/(x – 1)2 = (a + 1)/(a – 1)

⇒ {(x + 1)2 + (x – 1)2}/{(x + 1)2 – (x – 1)2 = 2a/2

Again applying componendo and dividendo

⇒ (x2 + 1 + 2x + x2 + 1 – 2x)/(x2 + 1 + 2x – x2 – 1 + 2x) = a

⇒ (2x+ 2)/4x = a

⇒ {2(x2 + 1)}/4x = a

⇒ (x+ 1)/2x = a

⇒ 2ax = x2 + 1

⇒ x2 – 2ax + 1 = 0

Proved

Question -15 Given x=………… Use componendo and dividendo to prove that  ⇒ b2 = 2a2x/(x2 + 1) (2010)

Answer -15

Ans-15 ml class 10 proportion exe-7.3

Squaring, both sides we have

⇒ {(x + 1)2}/{(x – 1)2} = (a2 + b2)/(a2 – b2)

⇒(x+ 1 + 2x)/(x2 + 1 – 2x) = (a2 + b2)/(a2 – b2)

Applying componendo and dividend both sides

⇒ (x2 + 1 + 2x + x2 + 1)/(x2 + 1 + 2x – x2 – 1 + 2x) = (a+ b2 + a2 – b2)/(a2 + b2 – a2 + b2)

(2x+ 2)/4x = 2a2/2b2

⇒ (x2 + 1)/2x = a2/b2

⇒ b2 = 2a2x/(x2 + 1)


Ratio and Proportion Exe-7.3

ML Aggarwal Class 10 ICSE Maths Solutions

Question-16 Given that . (a3 + 3ab2)/(b+ 3a2b) = 63/62 Using componendo and dividendo find a: b. (2009)

Answer -16

Given that (a3 + 3ab2)/(b+ 3a2b) = 63/62

By componendo and dividendo,

(a3 + 3ab2 + b+ 3a2b)/(a3 + 3ab– b3 – 3a2b) = (63 + 62)/(63 – 62) = 125/1

⇒ {(a + b)3}/{(a – b)3} = (5/1)3

⇒ (a + b)/(a – b) = 5

⇒ a + b = 5a – 5b

⇒ 5a – a – 5b – b = 0

⇒ 4a – 6b = 0

⇒ 4a = 6b

⇒ a/b = 6/4

⇒ a/b = 3/2

a : b = 3 : 2

Question -17 Given  (x3 + 12x)/(6x2 + 8) = (y3 + 27y)/(9y2 + 27) Using componendo and dividendo find x : y. (2015)

Answer -17

(x3 + 12x)/(6x2 + 8) = (y3 + 27y)/(9y2 + 27)

Using componendo- dividendo, we have

(x3 + 12x + 6x+ 8)/(x3 + 12x – 6x2 – 8) = (y3 + 27y + 9y2 + 27)/(y3 + 27y – 9y2 – 27)

⇒ (x + 2)3/(x – 2)3 = (y + 3)3/(9y – 3)3

⇒ {(x + 2)/(x – 1)}= {(y + 3)/(y – 3)}3

⇒ (x + 2)/(x – 2) = (y + 3)/(y – 3)

Again using componendo-dividendo, we get

(x + 2 + x – 2)/(x + 2- x + 2) = (y + 3 + y – 3)/(y + 3 – y + 3)

⇒ 2x/4 = 2y/3

⇒ x/2 = y/3

⇒ x/y = 2/3

Thus the required ratio is x : y = 2 : 3

Question-18 Using the properties of proportion, solve the following equation for x; given

(x+ 3x)/(3x2 + 1) = 341/91

Answer-18

(x+ 3x)/(3x2 + 1) = 341/91

Applying componendo and dividend

(x3 + 3x + 3x2 + 1)/(x3 + 3x – 3x2 – 1) = (341 + 91)/(341 – 91)

⇒ (x3 + 3x2 + 3x + 1)/(x3 – 3x2 + 3x – 1) = 432/250 = 216/125

⇒ (x + 1)3/(x – 1)3 = 216/125 = (6/5)3

∴ (x + 1)/(x – 1) = 6/5

⇒ 6x – 6 = 5x + 5

⇒ 6x – 5x = 5 + 6

⇒ x = 11

Question-19 If (x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)  , prove that each of these ratio is equal to 2/(a+b) unless x + y + z = 0

Answer -19

(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)

= (x + y + y + z + z + x)/(ax + by + ay + bz + az + bx)

= {2(x + y + z)}/{x(a + b) + y(a + b) + z(a + b)}

= {2(x + y + z)}/{(a + b)(x + y + z)}

= 2/(a + b) if x + y + z ≠0

Hence proved.

—  : End of ML Aggarwal Ratio and Proportion Exe-7.3 Class 10 ICSE Maths Solutions : –

Return to :- ML Aggarwal Solutions for ICSE Class-10

Thanks

Please Share with Your Friends

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

error: Content is protected !!