ML Aggarwal Factorisation Ch-Test Class 10 ICSE Maths Solutions Ch-6

ML Aggarwal Factorisation Ch-Test Class 10 ICSE Maths Solutions Ch-6 . We Provide Step by Step Answer of Ch-Test Questions for Factorisation as council prescribe guideline for upcoming board exam.  Visit official Website  CISCE  for detail information about ICSE Board Class-10.

ML Aggarwal Solutions of Quadratic Equations in one Variable Chapter-Test Questions for ICSE Class 10 Maths

Board ICSE
Subject Maths
Class 10th
Chapter-6 Factorisation
Writer / Book Understanding
Topics Solutions of Ch-Test
Academic Session 2024-2025

ML Aggarwal Solutions for ICSE Class 10 Maths

Question- 1 Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by

(i) x – 2
(ii) x + 3
(iii) 2x + 1

Answer -1

(i) let  x – 2 = 0, Then, x = 2

Now, substitute the value of x in f(x),

f(2) = 2(2)3 – 3(2)2 + 4(2) + 7

= 16 – 12 + 8 + 7

= 31 -12 = 19

Hence the remainder is 19

(ii) let x + 3 = 0 , Then, x = -3

substitute the value of x in f(x),

f(2) = 2(-3)3 – 3(-3)2 + 4(-3) + 7

= 2(-27) – 3(9) – 12 + 7

or  – 54 – 27 – 12 + 7

or  – 93 + 7

= – 86

Hence remainder is -86.

(iii) Let , 2x + 1 = 0, Then, 2x = -1

X = -½

substitute the value of x in f(x),

f (-½) = 2 (-½)3 – 3(-½)2 + 4 (-½) + 7

= 2(-1/8) – 3 (¼) + 4 (-½) + 7

or -¼ – ¾ – 2 + 7

= -1 – 2 + 7

= 4

Hence remainder is 4.

Question -2 When 2x3 – 9x2 + 10x – p is divided by (x + 1), the remainder is – 24.Find the value of p.

Answer -2

Let  x + 1 = 0, Then, x = -1

Given, f(x) = 2x3 – 9x2 + 10x – p

substitute the value of x in f(x),

f(-1) = 2(-1)3 – 9(-1)2 + 10(-1) – p

= -2 – 9 – 10 + p

= -21 + p

given that, the remainder = – 24,

So, -21 + p = -24

p = – 24 + 21

p = -3

therefore  value of p is 3.

Question -3 If (2x – 3) is a factor of 6x2 + x + a, find the value of a. With this value of a, factorise the given expression.

Answer -3

Let 2x – 3 = 0, Then, 2x = 3

X = 3/2,  Given, f(x) = 6x2 + x + a

substitute the value of x in f(x),

f(3/2) = 6(3/2)2 + (3/2) + a

= 6(9/4) + (3/2) + a

= 3(9/2) + (3/2) + a

or  27/2 + 3/2 + a

= 30/2 + a

= 15 + a

(2x – 3) is a factor of 6x2 + x + a.

remainder is 0.

Then, 15 + a = 0

a = -15

Therefore, f(x) = 6x2 + x – 15

Dividing f(x) by 2x – 3 we get,

6x2 + x – 15 = (2x – 3) (3x + 5)

Question- 4 When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.

Answer -4

Let  x – 2 = 0, Then, x = 2

f(x) = 3x2 – 5x + p

substitute the value of x in f(x),

So, f(2) = 3(2)2 – 5(2) + p

= 3(4) – 10 + p

or 12 – 10 + p

= 2 + p

given that, remainder= 3.

, 2 + p = 3

p = 3 – 2

p = 1

Therefore, f(x) = 3x2 – 5x + 1

polynomial, 3x2 – 5x + p – 3

substitute the value of p

= 3x2 – 5x + 1 – 3

= 3x2 – 5x – 2

Now, by factorizing the polynomial 3x2 – 5x – 2,

now Dividing 3x2 – 5x – 2 by x – 2

= (x – 2) (3x + 1)

Question- 5 Prove that (5x + 4) is a factor of 5x3 + 4x2 – 5x – 4. Hence factorize the given polynomial completely.

Answer -5

Let (5x + 4) = 0

Then, 5x = -4

x = -4/5

Given, f(x) = 5x3 + 4x2 – 5x – 4

substitute the value of x in f(x),

So, f(-4/5) = 5(-4/5)3 + 4(-4/5)2 – 5(-4/5) – 4

= 5(-64/125) + 4 (16/25) + 4 – 4

= -64/25 + 64/25

= (-64 + 64)/25

= 0/25

= 0

Hence, (5x + 4) is a factor of 5x3 + 4x2 – 5x – 4.

So, dividing 5x3 + 4x2 – 5x – 4 by 5x + 4 we get,

ml eactorization chapter test ques 5

5x3 + 4x2 – 5x – 4 = (5x + 4) (x2 – 1)

= (5x + 4) (x2 – 12)

= (5x + 4) (x + 1) (x – 1)

Question- 6 Use factor theorem to factorise the following polynomials completely:
(i) 4x3 + 4x2 – 9x – 9
(ii) x3 – 19x – 30

Answer- 6 

Let  x = -1, Given, f(x) = 4x3 + 4x2 – 9x – 9

substitute the value of x in f(x),

f(-1) = 4(-1)3 + 4(-1)2 – 9(-1) – 9

= -4 + 4 + 9 – 9 , = 0

x + 1 is the factor of 4x3 + 4x2 – 9x – 9.

dividing 4x3 + 4x2 – 9x – 9 by x + 1

4x3 + 4x2 – 9x – 9 = (x + 1) (4x2 – 9)

= (x + 1) ((2x)2 – (3)2)

= (x + 1) (2x + 3) (2x – 3)

(ii) x3 – 19x – 30

Let  x = -2, Given, f(x) = x3 – 19x – 30

substitute the value of x in f(x),

f(-1) = (-2)3 – 19(-2) – 30

= -8 + 38 – 30

= -38 + 38, = 0

, x + 2 is the factor of x3 – 19x – 30.

dividing x3 – 19x – 30 by x + 2,

x3 – 19x – 30 = (x + 2)(x2 – 2x – 15)

= (x + 2) (x2 – 5x + 3x – 15)

= (x + 2) (x – 5) (x + 3)

Question- 7 If x3 – 2x2 + px + q has a factor (x + 2) and leaves a remainder 9, when divided by (x + 1), find the values of p and q. With these values of p and q, factorize the given polynomial completely.

Answer- 7

Let x + 2 = 0, Then, x = -2

Now, substitute the value of x in f(x),

f(-2) = (-2)3 – 2(-2)2 + p(-2) + q

= -8 – 8 – 2p + q

= -16 – 2p + q

2p – q = – 16 …  (i)

and in case  — 2

Let x + 1 = 0, Then, x = -1

substitute the value of x in f(x),

f(-1) = (-1)3 – 2(-1)2 + p(-1) + q

= -1 – 2 –p + q

= – 3 – p + q

remainder = 9 Given,

-3 – p + q = 9

– p + q = 9 + 3

-p + q = 12 … (ii)

adding equation (i) and  (ii)

(2p – q) + (-p + q) = – 16 + 12

2p – q – p + q = -4

P = -4

Putting value P = -4 in equation (ii) to find  ‘b’.

– p + q = 12

-(-4) + q = 12

4 + q = 12

q = 12 – 4,    q = 8

substituting the value of p and q in f(x)

= x3 – 2x2 – 4x + 8

Dividing f(x) by (x + 2)

ml eactorization chapter test ques 7

x3 – 2x2 – 4x + 8 = (x + 2) (x2 – 4x + 4)

= (x + 2) (x2 – 2 × x (-2) + 22)

= (x + 2) (x – 2)2

Question -8  If (x + 3) and (x – 4) are factors of x3 + ax2 – bx + 24, find the values of a and b: With these values of a and b, factorise the given expression.

Answer -8

f(x) = x3 + ax2 – bx + 24
Let x + 3 = 0, then x = -3
Substituting the value of x in f(x)
f(–3) = (–3)3 + a(–3)2– b(–3) + 24,
= –27 + 9a + 3b + 24
= 9a + 3b – 3
∵ x + 3 is a factor,
∴ Remainder = 0,
∴ 9a + 3b – 3 = 0
⇒ 3a + b – 1 = 0   …(Dividing by 3)
⇒ 3a + b = 1                               …(i)
Again Let x – 4 = 0,
then x = 4
Substituting the value of x in f(x)
f(x) = (4)2 + a(4)2 – b(4) + 24
= 64 + 16a – 4b + 24
= 16a – 4b + 88
∵ x – 4 is a factor
∴ Remainder = 0
16a – 4b + 88 = 0
⇒ 16a – 4b = – 88    …(Dividing by 4)
⇒ 4a – b = –22                               …(ii)
Adding (i) and (ii)
7a = –21,
⇒ a = –3
Substituting the value of a in (i)
3(–3) + b = 1
⇒ –9 + b = 1
⇒ b = 1 + 9 = 10
∴ a = –3, b = 10
Now f(x) will be
f(x) = x3 – 3x2 – 10x + 24
∵ x + 3 and x – 4 are factors of f(x)
∴ Dividing f(x) by (x + 3)(x – 4)
or x2 – x – 12

If (x + 3) and (x – 4) are factors of x3 + ax2 – bx + 24, find the values of a and b

x3 – 3x2 – 10x + 24
= (x2 – x – 12)(x – 2)
= (x + 3)(x – 4)(x – 2).

Question -9  If (2x + 1) is a factor of both the expressions 2x2 – 5x + p and 2x2 + 5x + q, find the value of p and q. Hence find the other factors of both the polynomials.

Answer -9

Let  2x + 1 = 0

Then, 2x = -1 so  x = -½

Given, p(x) = 2x2 – 5x + p

substitute the value of x in p(x),

p (-½) = 2 (-½)2 – 5(-½) + p

= 2(1/4) + 5/2 + p

or   ½ + 5/2 + p

= 6/2 + p

= 3 + p

given that, (2x + 1) is a factor of both the expressions 2x2 – 5x + p

remainder is 0.  Then, 3 + p = 0

p = – 3

Now = 2x2 + 5x + q

Substitute the value of x in q(x)

q (-½) = 2 (-½)2 + 5(-½) + q

= 2(1/4) – 5/2 + q

= ½ – 5/2 + q

or  (1 – 5)/2 + q

= -4/2 + q

= q – 2

given that, (2x + 1) is a factor of both the expressions 2x2 + 5x + q

remainder is 0. so  q – 2 = 0 then  q = 2

Therefore, p = – 3 and q = 2

P(x) = 2x2 – 5x – 3

q(x) = 2x2 + 5x + 2

Then, divide p(x) by 2x + 1

If (2x + 1) is a factor of both the expressions 2x2 – 5x + p and 2x2 + 5x + q, find the value of p and q. Hence find the other factors of both the polynomials.

2x2 – 5x – 3 = (2x + 1) (x – 3)

divide q(x) by 2x + 1

If (2x + 1) is a factor of both the expressionzs 2x2 – 5x + p and 2x2 + 5x + q, find the value of p and q. Hence find the other factors of both the polynomials.

2x2 + 5x + 2 = (2x + 1) (x + 2)

Question-10  If a polynomial f(x)= X4-2x3-3x2-ax-b leaves reminder 5 and 19 when divided by (x-1) and (x+1) respectively, Find the values of a and b .Hence determined the reminder when f(x) is divided by (x-2).

Answer -10  Given that the equation

f(x) = x4 – 2x3 + 3x2 – ax +b

When f(x) is divided by (x+1) and (x-1) , the remainders are 19 and 5 respectively .

∴ f(-1) = 19 and f(1) = 5

(-1)4 – 2 (-1)3 + 3(-1)2 – a (-1) + b = 19

⇒ 1 +2 + 3 + a + b = 19

∴ a + b = 13 ——- (1)

According to given condition f(1) = 5

f(x) = x4 – 2x3 + 3x2 – ax

⇒ 14 – 2 3 + 3 2 – a (1) b = 5

⇒ 1 – 2 + 3 – a + b = 5

∴ b – a = 3 —— (2)

solving equations (1) and (2)

a = 5 and b = 8

Now substituting the values of a and b in f(x) , we get

∴ f(x) = x4 – 2x3 + 3x2 – 5x + 8

Also f(x) is divided by (x-2) so remainder will be f(2)

∴ f(x)= x4 – 2x3 + 3x2 – 5x + 8

⇒ f(2) = 16 – 16  + 3 × 4 – 5 × 2 + 8

= 12-10+8  = 10

Question -11  When a polynomial f(x) is divided by (x – 1), the remainder is 5 and when it is,, divided by (x – 2), the remainder is 7. Find – the remainder when it is divided by (x – 1) (x – 2).

Answer -11 

When f(x) is divided by (x – 1),
Remainder = 5
Let x – 1 = 0
⇒ x = 1
∴ f(1) = 5
When divided by (x – 2),
Remainder = 7
Let x – 2 = 0
⇒ x = 2
∴ f(2) = 7
Let f(x) = (x –  1)(x – 2)q(x) + ax + b
Where q(x) is the quotient and ax + b is remainder
Putting x = 1, we get:
f(1) = (1 –  1)(1 –  2)q(1) + a x 1 + b
= 0 + a + b
= a + b
and x = 2, then
f(2) = (2 –  1)(2 –  2)q(2) + a x 2 + b
= 0 + 2a + b
= 2a + b
∴ a + b = 5                ….(i)
2a + b = 7                 ….(ii)
Subtracting, we get
–a = – 2
⇒ a = 2
Substituting the value of a in (5)
2 + b = 5
⇒ b = 5 – 2 = 3
∴ a = 2, b = 3
∴ Remainder = ax + b
= 2x + 3.

— : End of ML Aggarwal Factorisation Ch-Test Class 10 ICSE Maths Solutions Ch-6 :–

Return to :- ML Aggarwal Solutions for ICSE Class-10

Thanks

Please Share with Your Friends

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

error: Content is protected !!