ML Aggarwal Ratio and Proportion Ch-Test Class 10 ICSE Maths Solutions Ch-7

ML Aggarwal Ratio and Proportion Ch-Test Class 10 ICSE Maths Solutions Ch-7. We Provide Step by Step Answer of Ch-Test Questions for Ratio and Proportion as council prescribe guideline for upcoming board exam. Visit official Website  CISCE  for detail information about ICSE Board Class-10.

ML Aggarwal Ratio and Proportion Ch-Test Class 10 ICSE Maths Solutions Ch-7

Board ICSE
Subject Maths
Class 10th
Chapter-7 Ratio and Proportion
Writer / Book Understanding
Topics Solutions of Ch-Test
Academic Session 2024-2025

Ratio and Proportion, Ch-Test Questions

ML Aggarwal Class 10 ICSE Maths Solutions Ch-7

Question-1 Find the compound ratio of:

(a + b)2 : (a – b )2 ,
(a2 – b2) : (a2 + b2),
(a4 – b4) : (a + b)4

Answer -1

(a + b) : (a – b)2 ,

(a2 – b2) : (a2 + b2),

(a4 – b4) : (a + b)4

{(a + b)2}/{(a – b)2} × (a– b2)/(a2 + b2) × (a4 – b4)/{(a + b)4}

= {(a + b)2/(a – b)2 } × {(a + b)(a – b)/(a2 + b2)} × {(a2 + b2)(a + b)(a – b)}/(a + b)4

= 1/1 ,  =   1 : 1

Question -2  If (7 p + 3 q) : (3 p – 2 q) = 43 : 2 find p : q

Answer -2

(7p + 3q) : (3p – 2q) = 43 : 2

⇒ (7p + 3q)/(3p – 2q) = 43/2

⇒ 129 p – 86q = 14p + 6q

⇒ 129p – 14p = 6q + 86q

⇒ 115p = 92q

⇒ p/q = 92/115 = 4/5

∴ p : q = 4 : 5

Question -3 If a : b = 3 : 5, find (3a + 5b): (7a – 2b).

Answer -3

a : b = 3 : 5

⇒ a/b = 3/5

⇒ 3a + 5n : 7a – 2b

Dividing each term by b

3.a/b + 5 : 3.a/b – 2

⇒ 3 × 3/5 + 5 : 7 × 3/5 – 2

or  (9/5 + 5) : (21/5 – 2)

⇒ (9 + 25)/5 : (21 – 10)/5

or 34/5 : 11/5

= 34 : 11

Question -4  The ratio of the shorter sides of a right angled triangle is 5 : 12. If the perimeter of the triangle is 360 cm, find the length of the longest side.

Answer -4  Let the two shorter sides of a right-angled triangle be 5x and 12x.
Third (longest side)
ml class 10 proportion mcq- Ans-4

= 13x

But 5x + 12x + 13x = 360 cm

⇒ 30x = 360

⇒ x = 360/10 = 12

∴ Length of the longest side = 13x

= 13 × 12 cm

= 156 cm

Question- 5 The ratio of the pocket money saved by Lokesh and his sister is 5 : 6. If the sister saves Rs 30 more, how much more the brother should save in order to keep the ratio of their savings unchanged?

Answer- 5 Let the savings of Lokesh and his sister are 5x and 6x.

And the Lokesh should save Rs y more. Now, according to the problem,

⇒ (5x + y)/(6x + 30) = 5/6

or 30x + 6y = 30x + 150

⇒ 30x + 6y – 30x = 150

or 6y = 150

∴ y = 150/6

= 25

Hence, Lokesh should save ₹ 25 more


Ratio and Proportion, Ch-Test Questions

ML Aggarwal Class 10 ICSE Maths Solutions Ch-7

Page-136

Question- 6 In an examination, the number of those who passed and the number of those who failed were in the ratio of 3 : 1. Had 8 more appeared, and 6 less passed, the ratio of passed to failures would have been 2 : 1. Find the number of candidates who appeared.

Answer -6

Let number of passed = 3 x
and failed = x
Total candidates appeared = 3x + x = 4x.
In second case
No. of candidates appeared = 4 x + 8
and No. of passed = 3 x – 6
and failed = 4x + 8 – 3x + 6 = x + 14
then ratio will be = 2 : 1
Now according to the condition

(3x – 6)/(x + 14) = 2/1

⇒ 3x – 6 = 2x + 28

⇒ 3x – 2x = 28 + 6

⇒ x = 34

∴ No. of candidates appeared = 4x

= 4 × 34

= 136

Question- 7 What number must be added to each of the numbers 15, 17, 34 and 38 to make them proportional ?

Answer -7

Let x be added to each number, then numbers will be
15 + x, 17 + x, 34 + x, and 38 + x.
Now according to the condition

(15 + x)/(17 + x) = (34 + x)/(38 + x)

⇒ (15 + x)(38 + x) = (34 + x)(17 + x)

⇒ 570 + 53x + x2 = 578 + 51x + x2

or   x2 + 53x – x– 51x = 578 – 570

⇒ 2x = 8

⇒ x = 4

∴ 4 is to be added.

Question- 8 If (a + 2 b + c), (a – c) and (a – 2 b + c) are in continued proportion, prove that b is the mean proportional between a and c.

Answer -8 

(a + 2b + c), (a – c) and (a – 2b + c) are in continued proportion

⇒ (a + 2b + c)/(a – c) = (a – c)/(a – 2b + c)

∴ (a + 2b + c)/(a – c) = (a – c)/(a – 2b + c)

⇒ (a + 2b + c)(a – 2b + c) = (a – c)2

⇒ a2 – 2ab + ac + 2ab – 4b2 + 2bc + ac – 2bc + c2

= a2 – 2ac + c2

⇒ a2 – 2ab + ac + 2ab – 4b2 + 2bc + ac – 2bc + c2 – a2 + 2ac – c2 = 0

⇒ 4ac – 4b2 = 0

⇒ ac – b2 = 0

⇒ b2 = ac

Hence b is the mean proportional between a and c.

Question -9 If 2, 6, p, 54 and q are in continued proportion, find the values of p and q.

Answer -9

2, 6, p, 54 and q are in continued proportional then

⇒ 2/6 = 6/p = p/54 = 54/q

(i) ∵ 2/6 = 6/p then 2p = 36

⇒ p = 18

(ii) p/54 = 54/q

⇒ pq = 54 × 54

⇒ 18q = 54 × 54

⇒ q = (54 × 54)/18

= 162

Hence p = 18, q = 162

Question- 10  If a, b, c, d, e are in continued proportion, prove that: a : e = a4 : b4.

Answer -10

a, b, c, d, e are in continued proportion

⇒ a/b = b/c = c/d = d/e = k (say)

d = ek, c = ek2, b = ek3 and a = ek4

Now L.H.S = a/e = (ek4)/e = k4

R.H.S = a4/b4 = (ek4)4/(ek3)4 = (e4k16)/(e4k12)

= k16 – 12

= k4

∴ L.H.S. = R.H.S.


Ratio and Proportion, Ch-Test Questions

ML Aggarwal Class 10 ICSE Maths Solutions Ch-7

Question -11  Find two numbers whose mean proportional is 16 and the third proportional is 128.

Answer- 11

Let x and y be two numbers
Their mean proportion = 16
and third proportion = 128

√xy=16

⇒ xy = 256

⇒ x = 256/y …(i)

And y2/x = 128

⇒ x = y2/128 …(ii)

From (i) and (ii)

256/y = y2/128

⇒ y3 = 256 × 128

= 32768

⇒ y3 = (32)3

⇒ y = 32

∴ x = 256/y = 256/32 = 8

∴ Numbers are 8, 32

Question -12 If q is the mean proportional between p and r, prove that: : p3 – 3q2 + r2 = q4((1/p²-3/q²+1/r²)

Answer -12

q is mean proportional between p and r
q² = pr

L.H.S. = p2 – 3q2 + r2 = p2 – 3pr + r2

R.H.S. = q4(1/p2 – 3/q2 + 1/r2)

= (q2)2 (1/p2 – 3/q2 + 1/r2)

= (pr)2 (1/p2 – 3/q2 + 1/r2)

or  (pr)2 (1/p2 – 3/pr + 1/r2)

= p2r2 (r2 – 3pr + p2)/(p2r2)

= r2 – 3pr + p2

∴ L.H.S. = R.H.S

Hence, proved

Question -13 If a/b=c/d=e/f, prove that each ratio is

(i)
 
(ii) 

0 chapter test ques 13b

Answer- 13

a/b=c/d=e/f

= k(say)
then  a = k, c = dk, e = fk
ml class 10 proportion Ch-Test Ans-13

(ii) [(2a3 + 5c3 + 7e3)/(2b3 + 5d3 + 7f3)]1/3

= [(2b3k3 + 5d3k3 + 7f3k3)/(2b3 + 5d3 + 7f3)]1/3

= k[(2b3 + 5d3 + 7f3)/(2b3 + 5d3 + 7f3)] 1/3 = k

Hence, proved.

Question- 14 If x/a=y/b=z/c, prove that (3x³-5y³+4c³) / (3a³-5b³+4c³) = [(3x-5y+4c) / (3a-5b+ac)]³

Answer -14 

x/a=y/b=z/c,

= k (say)
x = ak, y = bk, z = ck

L.H.S. = (3x3 – 5y3 + 4z3)/(3a3 – 5b3 + 4c2)

= (3a3k– 5b3k3 + 4c3k3)/(3a– 5b+ 4c3)

= k3(3a3 – 5b3 + 4c3)/(3a3 – 5b3 + 4c3) = k3

R.H.S = {(3x – 5y + 4z)/(3a – 5b + 4c)}3

= (3ak – 5bk + 4ck)/(3a – 5b + 4c)3

= {k(3a – 5b + 4c)}/(3a – 5b + 4c)}3

= (k)3

= k3

∴ L.H.S = R.H.S.

Question -15 If x : a = y : b, prove that (x4 + a4) / (x+ a3) + (y4 + b4) / (y3 + b3) = {(x + y)4 + (a + b)4} / {(x + y)3 + (a + b)3}

Answer -15

x/a = y/b = k (say)

x = ak, y = bk

L.H.S = (x4 + a4)/(x+ a3) + (y4 + b4)/(y3 + b3)

= (a4k4 + a4)/(a3k3 + a3) + (b4k4 + b4)/(b3k3 + b3)

= {a4(k4 + 1)}/{a3(k3 + 1)} + {b4(k4 + 1)|/{b3(k3 + 1)}

= {a(k4 + 1)/(k3 + 1)} + {b(k+ 1)/(k3 + 1)}

= {a(k4 + 1) + b(k4 + 1)}/(k3 + 1)

= (k4 + 1)(a + b)/(k3 + 1)

R.H.S = {(x + y)4 + (a + b)4}/{(x + y)3 + (a + b)3}

= {(ak + bk)4 + (a + b)4}/{(ak + bk)3 + (a + b)3}

= {k4(a + b)+ (a + b)4}/{k3(a + b)3(a + b)3}

= {(a + b)4(k4 + 1)}/{(a + b)3(k3 + 1)}

= {(a + b)(k4 + 1)}/(k3 + 1) = {(k4 + 1)/(a + b)}/(k3 + 1)

∴ L.H.S = R.H.S.

Hence, proved.


Ratio and Proportion, Ch-Test Questions

ML Aggarwal Class 10 ICSE Maths Solutions Ch-7

Question -16 If x/(b + c – a) = y/(c + a – b) = z/(a + b – c) prove that each ratio’s equal to :(x + y + z)/(a + b + c)

Answer -16

x/(b + c – a) = y/(c + a – b) = z/(a + b – c) = k (say)

x = k(b + c – a),

y = k(c + a – b),

z = k(a + b – c),

(x + y + z)/(a + b + c)

= {k(b + c – a) + k(c + a – b) + k(a + b – c)}/(a + b + c)

= {k(b + c – a + c + a – b + a + b – c)}/(a + b + c)

= {k(a + b + c)}/(a +b + c)

= k

Hence, proved.

Question -17 If a : b = 9 : 10, find the value of
(i) (5a+3b)/(5a-3b)
(ii)( 2a²-3b²)/(2a²+3b²)

Answer -17

a : b = 9 : 10

⇒ a/b = 9/10

(i) (5a + 3b)/(5a – 3b)

= (5a/b + 3b/b)/(5a/b – 3b/b)

= (5a/b + 3)/(5a/b – 3)(Dividing by b)

= (5 × 9/10 + 3)/(5 × 9/10 – 3) (Substituting the value of a/b)

= (9/3 + 3)/(9/2 – 3)

= (15/2)/(3/2)

= 15/2 × 2/3

= 5

(ii) (2a2 – 3b2)/(2a2 + 3b2)

= [(2a2/b2 – 3b2/b2]/[2a2/b2 – 3b2/b2] (Dividing by b2)

= {2(a/b)2 – 3}/{2(a/b)2 + 3}

= {2(9/10)2 – 3}/{2(9/10)2 + 3}

= (2 × 81/100 – 3)/(2 × 81/100 + 3)

= (81/50 – 3)/(81/5 + 3)

= {(81 – 150)/50}/{(81 + 150)/50}

= – 69/50 × 50/231

= – 69/231

= – 23/77

Question -18  If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of  ;(3x+ 5y4)/(3x– 5y4)

Answer -18

(3x+ 2y4)/(3x– 2y4) = 11/9

Applying componendo and dividendo,

(3x2 + 2y2 + 3x2 – 2y2)/(3x2 + 2y2 – 3x2 + 2y2)

= (11 + 9)/(11 – 9)

⇒ 6x2/4y2 = 20/2

⇒ 3x2/2y2 = 10

⇒ x2/y2 = 10 × 2/3

= 20/2

(3x+ 5y4)/(3x4 – 5y4)

= (3x4/y4 + 25y4/y4)/(3x4/y4 – 25y4/y4)

= {3(x2/y2)2 + 25}/{3(x2/y2)2 – 25}

= {3 × (20/3)2 + 25}/{3(20/3)2 – 25}

= (3 × 400/9 + 25)/(3 × 400/9 – 25)

= (400/3 + 25/1)/(400/3 – 25/1)

= {(400 + 75)/3}/{(400 – 75)/3}

= 475/3 × 3/325

= 19/13

Question- 19 If x = 2mab/(a + b), find the value of
{(x + ma)/(x – ma)} + {(x + mb)/(x – mb)}

Answer -19

x = 2mab/(a + b)

⇒ x/ma + 2b/(a + b)

Applying componendo and dividendo

(x + ma)/(x – ma) = (2b + a + b)/(2b – a – b)

= (3b + a)/(b – a) ….(i)

Again x/mb = 2a/(a + b)

Applying componendo and dividendo

(x + mb)/(x – mb)

= (2b + a + b)/(2b – a – b)

= (3b + a)/(a – b) …(ii)

Adding (i) and (ii)

{(x + ma)/(x – ma)} + {(x + mb)/(x – mb)}

= {(3b + a)/(b – a)} + {(3a + b)/(a – b)}

= – {(3b + a)/(a – b)} + {(3a + b)/(a – b)}

or  (- 3b – a + 3a + b)/(a – b)

= (2a – 2b)/(a – b)

or  {2(a – b)}/(a – b)

= 2

Question -20 If x = pab/(a + b) ,prove that {(x + pa)/(x – pa)} – {(x + pb)/(x – pb)}=2(a2 – b2)/ab

Answer -20

x = pab/(a + b)

⇒ x/pa + b/(a + b)

Applying componendo and dividendo

(x + pa)/(x – pa)

= (b + a + b)/(b – a – b)

= (a + 2b)/-a ….(i)

Again, x/pb = a/(a + b)

Applying componendo and dividendo,

(x + pb)/(x – pb)

= (a + a + b)/(a – a – b)

= {(2a + b)/-b} …(ii)

L.H.S = {(x + pa)/(x – pa)} – {(x + pb)/(x – pb)}

= {(a + 2b)/-a} – {(2a + b)/-b}

= {(a + 2b)/-a} + {(2a + b)/b}

= {(ab + 2b2 – 2a2 – ab)/(-ab)}

= {(2b2 – 2a2)/(-ab)}

= (- 2a2 + 2b2)/(- ab)

= {-2(a2 – b2)/(-ab)}

= 2(a2 – b2)/ab

= R.H.S.


Ratio and Proportion, Ch-Test Questions

ML Aggarwal Class 10 ICSE Maths Solutions Ch-7

Question- 21 Find x from the equation (a+x+√a²x²) / (a+x-√a²-x²) = b/x

Answer -21

ml class 10 proportion mcq- Ans-21
Squaring both sides,

{(a + x)2}/(a2 – x2) = {(b + x)2}/{(b – x)2}

⇒ {(a + x)2}/{(a + x)(a – x)} = {(b + x)2/(b – x)2}

⇒ (a + x)/(a – x) = (b + x)2/(b – x)2

Again applying componendo and dividendo,

(a + x + a – x)/(a + x – a + x) = (b + x)2 + (b – x)2 /(b + x)2 – (b – x)2

⇒ 2a/2x = {2(b2 + x2)/4bx}

⇒ a/x = (b2 + x2)/2bx

2bx = x(b2 + x2)

⇒ 2ab = b2 + x2

⇒ x2 = 2ab – b2

x = √ (2ab –b2 )

Question -22

ratio and proportion ml class 10 chapter test ques 22

Answer- 22

Applying componendo and dividendo,

ml class 10 proportion mcq- Ans-22

Cubing both sides

(x + 1)3/(x – 1)3 = (a + 1)/(a – 1)

Again applying componendo and dividendo,

{(x + 1)3 + (x – 1)3}/{(x + 1)3 – (x – 1)3}

= (a + 1 + a – 1)/(a + 1 – a + 1)

⇒ {2(x+ 3x)}/{2(3x2 + 1)} = 2a/2

⇒ (x+ 3x)/(3x2 + 1) = a/1

⇒ x3 + 3x = 3ax+ a

⇒ x3 – 3ax+ 3x – a = 0

Hence, proved.

— : End of ML Aggarwal Ratio and Proportion Ch-Test Questions for ICSE Class 10 Maths Solutions Ch-7 :–

Return to :- ML Aggarwal Solutions for ICSE Class-10

Thanks

Please Share with Your Friends

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

error: Content is protected !!