Expansions Class 9 RS Aggarwal Exe-3A Goyal Brothers ICSE Foundation Maths Solutions. In this article you will learn How to Expand (a+b)^2 and (a-b)^2 Using Formula easily. Visit official Website CISCE for detail information about ICSE Board Class-9 Mathematics.
Expansions Class 9 RS Aggarwal Exe-3A Goyal Brothers ICSE Maths Solutions
Board | ICSE |
Publications | Goyal brothers Prakshan |
Subject | Maths |
Class | 9th |
Chapter-3 | Expansion |
Writer | RS Aggrawal |
Book Name | Foundation |
Topics | Special Products |
Academic Session | 2024-2025 |
How to Expand (a+b)^2 and (a-b)^2 Using Formula
Expand the (a+b)^2 and (a-b)^2 as given below. apply these two expansion formula to expand the expression.
- (a + b)2 = a2 + 2ab + b2
- (a – b)2 = a2 – 2ab + b2
Using (a + b)2 formula: a2 + b2 = (a + b)2 – 2ab. Using (a – b)2 formula: a2 + b2 = (a – b)2 + 2ab
Exercise- 3A
Expansions Class 9 RS Aggarwal Exe-3A Goyal Brothers ICSE Foundation Maths Solutions
Page- 48,49
Using the standard formulae, expand each of the following (Q1 to 13) :
Que-1: (i) (4a+9)² (ii) (3x+10y)² (iii) (√2m+√3n)²
Solution- (a+b)² = a²+b²+2ab
(i) (4a +9)2 = (4a)2 + 2 (4a) (9) + 92
= 16a2 + 72a + 81
(ii) (3x +10y)2 = (3x)2 + 2 (3x) (10y) + (10y)2
= 9x2 + 60xy + 100y2
(iii) (√2m +√3n)2 = (√2m)2 + 2 (√2m) (√3n) + (√3n)2
= 2m2 + 2√6mn + 3n2
Que-2: (i) (2a²+3b)² (ii) (3x²y+z)² (iii) (2x+1/3x)²
Solution- (a + b)² = a² + b² + 2ab
(i) (2a² + 3b)²
(2a²)² + (3b)² + 2(2a²)(3b)
4a⁴ + 9b² + 12a² b
(ii) (3x² y + z)²
(3x² y)² + (z)² + 2(3x² y)(z)
9x⁴ y2 + z² + 6 x²yz
(iii) (2x + 1/3x)²
(2x)² + (1/3x)² + 2(2x)(1/3x)
4x² + 1/9x² + 4/3x²
Que-3: (i) (2x/5+5y/6)² (ii) (x/3+6/x)² (iii) (6+5/x)²
Solution- (a-b)² = a² + b² + 2ab
(i) (2x/5+5y/6)²
= (2x/5)² + (5y/6)² + 2(2x/5)(5y/6)
= 4x²/25 + 25y²/36 + 2xy/3
(ii) (x/3+6/x)²
= (x/3)² + (6/x)² + 2(x/3)(6/x)
= x²/9 + 36/x² + 4
(iii) (6+5/x)²
= (6)² + (5/x)² + 2(6)(5/x)
= 36 + 25/x² + 60/x.
Que-4: (i) (5x-3y)² (ii) (3a-7b)² (iii) (1x/2-3y/2)²
Solution- (a-b)² = a² + b² – 2ab
(i) (5x-3y)²
= (5x)² + (3y)² – 2(5x)(3y)
= 25x² + 9y² – 30xy
(ii) (3a-7b)²
= (3a)² + (7b)² – 2(3a)(7b)
= 9a² + 49b² – 42ab
(iii) (1x/2-3y/2)²
= (1x/2)² + (3y/2)² – 2(1x/2)(3y/2)
= x²/4 + 9y²/4 – 3xy/2
Que-5: (i) (a²-b/2)² (ii) (3a/2b – 2b/3a)² (iii) (5x-2/3x)²
Solution- (a-b)² = a² + b² – 2ab
(a²-b/2)²
= (a²)² + (b/2)² – 2(a)(b/2)
= a^4 + b²/4 – a²b
(ii) (3a/2b-2b/3a)²
= (3a/2b)² + (2b/3a)² – 2(3a/2b)(2b/3a)
= 9a²/4b² + 4b²/9a² – 2
(iii) (5x-2/3x)²
= (5x)² + (2/3x)² – 2(5x)(2/3x)
= 25x² + 4/9x² – 20/3.
Que-6: (i) (a+2b+3c)² (ii) (3x+5y-2z)² (iii) (2x-3y+7z)²
Solution- (i) (𝑎+2𝑏+3𝑐)²
According to the equation ,
(𝑎+𝑏+𝑐)² = 𝑎²+𝑏²+𝑐²+2𝑎𝑏+2𝑏𝑐+2𝑐𝑎
So we get,
Using the formula we can it write it as
(𝑎+2𝑏+3𝑐)² = 𝑎²+(2𝑏)²+(3𝑐)²+2𝑎(2𝑏)+(2(2𝑏)(3𝑐)+2(3𝑐)𝑎
On further calculation we get,
(𝑎+2𝑏+3𝑐)² = 𝑎²+4𝑏²+9𝑐²+4𝑎𝑏+12𝑏𝑐+6𝑎𝑐
(ii) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(3x+5y-2z)² = (3x)²+(5y)²+(-2z)²+(2×3x×5y)+{2×5y×(-2z)}+{2×(-2z)+3x}
= 9x²+25y²+4z²+30xy-20yz-12zx.
(iii) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(2x-3y+7z)² = (2x)²+(-3y)²+(7z)²+(2.2x.(-3y))+(2.(-3y).7z)+(2.7z.2x)
= 4x²+9y²+49z²-12xy-42yz+28xz
Que-7: (i) (6-2y+4z)² (ii) (4x-3y+z)² (iii) (7-2x-3y)²
Solution- (i) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(6-2y+4z)² = (6)²+(-2y)²+(4z)²+{2.6.(-2y)}+{2.(-2y).4z}+{2.6.4z}
= 36+4y²+16z²-24y-16z+48z
(ii) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(4x-3y+z)² = (4x)²+(-3y)²+(z)²+{2.4x.(-3y)}+{2.(-3y).z}+{2.z.4x}
= 16x²+9y²+z²-24xy-6yz+8xz
(iii) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(7-2x-3y)² = (7)²+(-2x)²+(-3y)²+{2.7.(-2x)}+{2.(-2x).(-3y)}+{2.7.(-3y)}
= 49+4x²+9y²-28x+12xy-42y.
Que-8: (i) (a/2 + b/3 + c/4)² (ii) (2x/3+3/2y-2)² (iii) (2x+3/x-1)²
Solution- (i) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(a/2+b/3+c/4)² = (a/2)²+(b/3)²+(c/4)²+{2.(a/2).(b/3)}+{2.(b/3).(c/4)}+{2.(c/4).(a/2)}
= a²/4 + b²/9 + c²/16 + ab/3 + bc/6 + ac/4
(ii) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(2x/3+3/2y-2)² = (2x/3)²+(3/2y)²+(-2)²+{2.(2x/3).(3/2y)}+{2.(3/2y).(-2)}+{2.(-2).(2x/3)}
= 4x²/9 + 9/4y² + 4 + 2x/y – 6/y – 8x/3
(iii) (a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(2x+3/x-1)² = (2x)²+(3/x)²+(-1)²+{2.(2x).(3/x)}+{2.{3/x}.(-1)}+{2.(-1).(2x)}
= 4x² + 9/x² + 1 + 12 – 6/x – 4x
= 4x² + 9/x² + 13 – 6/x – 4x.
Que-9: (i) (x+7)(x+4) (ii) (a+13)(a-8) (iii) (y-6)(y-4)
Solution- (i) (x+7)(x+4)
= x²+4x+7x+28
= x²+11x+28
(ii) (a+13)(a-8)
= a²-8a+13a-104
= a²+5a-104
(iii) (y-6)(y-4)
= y²-4y-6y+24
= y²-10y+24.
Que-10: (i) (9+2x)(9-3x) (ii) (5x-4y)(5x+3y) (iii) (3-7a)(3+4a)
Solution- (i) (9+2x)(9-3x)
= 81-27x+18x-6x²
= 81-9x-6x²
(ii) (5x-4y)(5x+3y)
= 25x²+15xy-20xy-12y²
= 25x²-5xy-12y²
(iii) (3-7a)(3+4a)
= 9+12a-21a-28a²
= 9-9a-28a².
Que-11: (i) (3a+2b)(3a-2b) (ii) (5x+1/5x)(5x-1/5x) (iii) (2x²+3/x²) (2x²-3/x²)
Solution- (i) (3a+2b)(3a-2b)
= 9a²-6ab+6ab-4b²
= 9a² – 4b²
(ii) (5x+1/5x)(5x-1/5x)
[Using identity, (a + b)(a – b) = a² – b²]
a = 5x and b = 1/5x
= (5x)² – (1/5x)²
= 25x² – 1/25x²
(iii) (2x²+3/x²)(2x²-3/x²)
[Using identity, (a + b)(a – b) = a² – b²]
a = 2x² and b = 3/x²
= (2x²)² – (3/x²)²
= 4x^4 – 9/x^4.
Que-12: (i) (2-x)(2+x)(4+x²) (ii) (x+y)(x-y)(x²+y²)
Solution- (i) (2-x)(2+x)(4+x²)
[Using identity, (a + b)(a – b) = a² – b²]
= [(2)² – (x)²] (4+x²)
= (4-x²)(4+x²)
[Using identity, (a + b)(a – b) = a² – b²]
= (4)² – (x²)²
= 16 – x^4
(ii) (x+y)(x-y)(x²+y²)
[Using identity, (a + b)(a – b) = a² – b²]
= [(x)² – (y)²] (x²+y²)
= (x²-y²)(x²+y²)
[Using identity, (a + b)(a – b) = a² – b²]
= (x²)² – (y²)²
= x^4 – y^4.
Que-13: (i) (x-2)(x-3)(x+4) (ii) (x-5)(2x-1)(2x+3)
Solution- (i) (x-2)(x-3)(x+4)
= [x²-3x-2x+6](x+4)
= [x²-5x+6](x+4)
= [x³-5x²+6x+4x²-20x+24]
= [x³-x²-14x+24]
(ii) (x-5)(2x-1)(2x+3)
= [2x²-x-10x+5](2x+3)
= [2x²-11x+5](2x+3)
= [4x³-22x²+10x+6x²-33x+15]
= [4x³-16x²-23x+15]
Que-14: Simplify :
(i) (a+b)² + (a-b)² (ii) (a+b)² – (a-b)² (iii) (x+1/x)² + (x-1/x)²
(iv) (x+1/x)² – (x-1/x)² (v) (a/2b+2b/a)² – (2b/a-a/2b)²
(vi) (3x-1/3x)² – (3x+1/3x)(3x-1/3x) (vii) (5a+3b)² – (5a-3b)² – 60ab
(viii) (3x+1)² – (3x+2)(3x-1)
Solution- (i) (a+b)² + (a-b)²
= (a²+b²+2ab) + (a²+b²-2ab)
= [a²+b²+2ab+a²+b²-2ab]
= 2a²+2b²
= 2(a²+b²)
(ii) (a+b)² – (a-b)²
[Using identity, (a + b)(a – b) = a² – b²]
= [a+b+a-b] [a+b-a+b]
= (2a)(2b)
= 4ab
(iii) (x+1/x)² + (x-1/x)²
= [x²+1/x²+2.x.1/x] + [x²+1/x²-2.x.1/x]
= [x²+1/x²+2] + [x²+1/x²-2]
= [x²+1/x²+2+x²+1/x²-2]
= 2x²+2/x²
= 2(x²+1/x²)
(iv) (x+1/x)² – (x-1/x)²
[Using identity, (a + b)(a – b) = a² – b²]
[x+1/x+x-1/x] [x+1/x-x+1/x]
= (2x)(2/x)
= 4
(v) (a/2b+2b/a)² – (2b/a-a/2b)²
[Using identity, (a + b)(a – b) = a² – b²]
= [a/2b+2b/a+2b/a-a/2b] [a/2b+2b/a-2b/a+a/2b]
= (4b/a)(2a/2b)
= 4
(vi) (3x-1/3x)² – (3x+1/3x)(3x-1/3x)
[Using identity, (a + b)(a – b) = a² – b²]
= (3x-1/3x)² – [(3x)² – (1/3x)²]
= [(3x)²+(1/3x)²-2.3x.1/3x] – (9x²-1/9x²)
= [9x²+1/9x²-2] – (9x²-1/9x²)
= [9x²+1/9x²-2-9x²+1/9x²]
= 2/9x²-2
= 2(1/9x²-1)
(vii) (5a+3b)² – (5a-3b)² – 60ab
= [(5a)²+(3b)²+2.5a.3b] – [(5a)²+(3b)²-2.5a.3b] – 60ab
= [25a²+9b²+30ab] – [25a²+9b²-30ab] – 60ab
= 25a²+9b²+30ab-25a²-9b²+30ab-60ab
= 60ab – 60ab = 0.
(viii) (3x+1)² – (3x+2)(3x-1)
= [(3x)²+(1)²+2.1.3x] – (9x²-3x+6x-2)
= (9x²+1+6x) – (9x²+3x-2)
= 9x²+1+6x-9x²-3x+2
= 3x+3
= 3(x+1).
Que-15: (i) If a+b = 7 and ab = 10, find the value of (a-b) , (ii) If x-y = 5 and xy = 24, find the value of (x+y)
Solution- (i) We know that,
( a + b )2 = a2 + 2ab + b2
and
( a – b )2 = a2 – 2ab + b2
Rewrite the above equation, we have
( a – b )2 = a2 + b2 – 2ab + 4ab
= ( a + b )2 – 4ab …(1)
Given that a + b = 7; ab = 10
Substitute the values of ( a + b ) and (ab)
in equation (1), we have
( a – b )2 = (7)2 – 4(10)
= 49 – 40 = 9
⇒ a – b = ±√9
⇒ a – b = ±3 Ans.
(ii) (x + y)² = (x – y)² + 4xy
= (x + y)² = (5)² + 4 × 24
= (x + y)² = 25 + 96
= (x + y)² = 121
= (x + y) = √121
= (x + y) = 11 Ans.
Que-16: If (3a+4b) = 16 and ab = 4, find the value of (9a²+16b²).
Solution- Given: (3a+4b)=16 … (i) and ab = 4 … (ii)
Squaring (i), we get
(3a+4b)2 = 162
9a2 + 16b2 + 2 x 3a x 4b = 256
9a2 + 16b2 + 24ab = 256
9a2 + 16b2 = 256 – 24ab
9a2 + 16b2 = 256 – 24(4) … Using (ii)
9a2 + 16b2 = 256 – 96
9a2 + 16b2 = 160 Ans.
Que-17: If (a+b) = 2 and (a-b) = 10, find the values of (i) (a²+b²) (ii) ab.
Solution- (i) We know that
(a + b)² = a² + b² + 2ab
Given : a + b = 2
ab = – 24
⇒ (2)² = a² + b² + 2(-24)
⇒ 4 = a² + b² – 48
⇒ 4 + 48 = a² + b²
⇒ 52 = a² + b²
⇒ a² + b² = 52 Ans.
(ii) We know that,
(a + b)² = (a – b)² + 4ab
Given : a + b = 2
a – b = 10
⇒ (2)² = (10)² + 4ab
⇒ 4 = 100 + 4ab
⇒ 4 – 100 = 4ab
⇒ – 96 = 4ab
⇒ – 96/4 = ab
⇒ – 24 = ab
⇒ ab = – 24 Ans.
Que-18: If (a-b) = 0.9 and ab = 0.36, find the values of (i) (a+b) (ii) (a²-b²)
Solution- (i) We know that,
( a – b )2 = a2 – 2ab + b2
and
( a + b )2 = a2 + 2ab + b2
Rewrite the above equation, we have
( a + b )2 = a2 + b2 – 2ab + 4ab
= ( a – b )2 + 4ab …(1)
Given that a – b = 0.9 ; ab = 0.36
Substitute the values of ( a – b ) and (ab)
in equation (1), we have
( a + b )2 = ( 0.9 )2 + 4( 0.36 )
= 0.81 + 1.44 = 2.25
⇒ a + b = ±√2.25
⇒ a + b = ±1.5 Ans.
(ii) We know that,
a2 – b2 = ( a + b )( a – b ) ….(3)
From equation (2) we have,
a + b = ±1.5
Thus equation (3) becomes,
a2 – b2 = (±1.5)(0.9) [ given a – b = 0.9 ]
⇒ a2 – b2 = ±1.35 Ans.
Que-19: If (x+1/x) = 5, find the values of (i) (x²+1/x²) (ii) (x^4 + 1/x^4)
Solution- (i) x+1/x = 5
Squaring both sides
(x+1/x)² = (5)²
⇒ x²+1/x²+2×x×1/x = 25
⇒ x²+1/x²+2 = 25
⇒ x²+1/x² = 25-2 = 23
∴x²+1/x² = 23 Ans.
(ii) (x²+1/x²)² = (23)²
⇒ x^4 + 1/x^4 + 2×x²×1/x² = 529
⇒ x^4 + 1/x^4 + 2 = 729
⇒ x^4 + 1/x^4 = 529−2 = 527
∴ x^4 + 1/x^4 = 527 Ans.
Que-20: If (x-1/x) = 4, find the values of (i) (x²+1/x²) (ii) (x^4 + 1/x^4)
Solution-x-1/x = 4
Squaring both sides,
(i) (x-1/x)² = (4)²
⇒ x² + 1/x² – 2×x+1/x = 16
⇒ x²+1/x² – 2 = 16
⇒ x²+1/x² = 16+2 = 18
∴ x²+1/x² = 18 Ans.
(ii) Again squaring both sides,
(x²+1/x²) = (18)²
⇒ (x²)² + (1/x²)² + 2×x²×1/x² = 324
⇒ x^4 + 1/x^4 + 2 = 324
⇒ x^4 + 1/x^4 = 324−2 = 322
∴ x^4+1/x^4 = 322 Ans.
Que-21: If x-2 = 1/3x, find the values of (i) (x²+1/9x²) (ii) (x^4+1/81x^4)
Solution- (i) x-2 = 1/3x
x-1/3x = 2
Squaring on both sides, we get
(x-1/3x)² = (2)²
x² + 1/9x² – 2/3 = 4
x² + 1/9x² = 4 + 2/3
x² + 1/9x² = (12+2)/3
x² + 1/9x² = 14/3 Ans.
(ii) x² + 1/9x² = 14/3.
Squaring on both sides, we get
(x² + 1/9x²)² = (14/3)²
x^4 + 1/81x^4 + 2/9 = 196/9
x^4 + 1/81x^4 = 196/9 – 2/9
x^4 + 1/81x^4 = (196-2)/9
x^4 + 1/81x^4 = 194/9 Ans.
Que-22: If (x+1/x) = 6, find the values of (i) (x-1/x) (ii) (x²-1/x²).
Solution- (i) x + 1/x = 6
Using algebraic identity (a – b)² = (a + b)² – 4ab
(x – 1/x)² = (x + 1/x)² – 4(x)(1/x)
(x – 1/x)² = 6² – 4(x)(1/x)
(x – 1/x)² = 36 – 4 = 32
x – 1/x = ± √32 = ± 4√2 Ans.
(ii) Now, x² – 1/x² = x² + ( 1/x )²
= ( x + 1/x )( x – 1/x )
Since a² – b² = (a + b)(a – b)
= 6( ± 4√2 )
= ± 24√2 Ans.
Que-23: If (x-1/x) = 8, find the values of (i) (x+1/x) (ii) (x²-1/x²).
Solution- (i) Let y = (x+1/x).
We know: (x−1/x) = 8
Let’s square both sides:
(x−1/x)² = 8²
x²−2⋅x⋅1x+(1/x)² = 64
x²−2+1/x² = 64
x²+1/x² = 66
Now, let’s square (x+1/x) as well:
(x+1/x)² = y²
y² = x²+2+1/x²
We already know x+1/x² = 66:
y² = 66+2
y² = 68
y = √68
y = ±√68
y = ±2√17
x+1/x = ±2√17 Ans.
(ii) We already have:
x²+1/x² = 66
Using the identity for the difference of squares:
(x−1x)(x+1x) = x²−1/x²
Substituting the known values:
(8)(±2√17) = x²−1/x²
x²−1/x² = ±16√17 Ans.
Que-24: If (x²+1/x²) = 7, find the values of (i) (x+1/x) (ii) (x-1/x)
(iii) (2x² – 2/x²).
Solution- (i) Given
(x²+1/x² = 7)
x+1/x
Squaring we get
(x+1/x)² = x²+1/x²−2 (Using (a+b)²)
(x+1/x)² = (7+2)
(x+1/x)² = 9
Taking Square root on both sides , we get
(x+1x) = ±3 Ans.
(ii) Given
(x²+1/x² = 7)
x−1/x
Squaring we get
(x−1/x)² = x²+1/x²−2 (Using (a+b)²)
(x−1/x)² = (7−2)
(x−1/x)² = 5
Taking Square root on both sides , we get
(x−1x) = ±√5 Ans.
(iii) → x² + 1/x² = 7
Adding 2 both sides we get,
→ x² + 1/x² + 2 = 7 + 2
→ x² + 1/x² + 2 * x * 1/x = 9
Comparing LHS, with a²+b²+2ab = (a+b)² we get,
→ (x + 1/x)² = 9
Square root both sides we get,
→ (x + 1/x) = 3 ( Assuming Positive value only). ——- eq (1)
→ x² + 1/x² = 7
Subtracting 2 both sides we get,
→ x² + 1/x² – 2 = 7 – 2
→ x² + 1/x² – 2 * x * 1/x = 5
Comparing LHS, with a² + b² – 2ab = (a – b)² we get,
→ (x – 1/x)² = 5
Square root both sides we get,
→ (x – 1/x) = √5 ( Assuming Positive value only). eq (2)
→ 2(x² – 1/x²)
Using (a² – b²) = (a+b)(a – b) we get,
→ 2(x + 1/x)(x – 1/x)
Putting Values Form Equation (1) & (2) Now, we get,
→ 2 * 3 * √5
→ 6√5 (Ans).
Que-25: If (x²+1/25x²) = 9*(2/5), find the value of (x-1/5x)
Solution- (x²+1/25x²) = 9*(2/5) = 47/5
∵ (x+1/5x)² = (x)² + (1/5x)² − 2.x.1/5x
= x² + 1/25x² − 2/5
= 47/5 − 2/5
= (47−2)/5 = 45/5 = 9
⇒ x−1/5x = ±3 Ans.
Que-26: If (a²-4a-1) = 0 and a≠0, find the values of :
(i) (a-1/a) (ii) (a+1/a) (iii) (a²-1/a²) (iv) (a²+1/a²)
Solution- (i) a2 – 4a – 1 = 0
⇒ on taking a common we get,
⇒ a (a -4 -1/a ) = 0
⇒ a – 4 – 1/a = 0
⇒ a – 1/a = 4 Ans.
(ii) a² – 4a – 1 = 0
→ a² – 1 = 4a
→ a – (1/a) = 4 … (1)
Squaring on both sides
→ a² + (1/a)² – 2(a*1/a) = 16
→ a² + 1/a² = 16 + 2 = 18
Add 2(x*1/x) to both sides:
→ a² + 1/a² + 2(x*1/x) = 18 + 2(x*1/x)
→ (a + 1/a)² = 18 + 2 = 20
→ (a + 1/a) = ± √20 = ±√(4*5) = ±√(2² *5)
→ a + 1/a = ± 2√5 Ans.
(iii) a² – 4a – 1 = 0
→ a² – 1 = 4a
→ a – (1/a) = 4 … (1)
Squaring on both sides
→ a² + (1/a)² – 2(a*1/a) = 16
→ a² + 1/a² = 16 + 2 = 18
Add 2(x*1/x) to both sides:
→ a² + 1/a² + 2(x*1/x) = 18 + 2(x*1/x)
→ (a + 1/a)² = 18 + 2 = 20
→ (a + 1/a) = ± √20 = ±√(4*5) = ±√(2² *5)
→ a + 1/a = ± 2√5
a² – 1/a²
→ a² – (1/a)² = (a + 1/a)(a – 1/a)
→ (± 2√5)(4)
→ ± 8√5 Ans.
(iv) Now, on squaring both the sides we get,
( a – 1/a)2 = a2 + 1/a2 – 2 × a × 1/a
⇒ 16 = a2 + 1/a2 – 2
a2 + 1/a2 = 18 Ans.
Que-27: If a = 1/(a-5), where a≠5 and a≠0, find the values of :
(i) (a-1/a) (ii) (a+1/a) (iii) (a²-1/a²) (iv) (a²+1/a²)
Solution- (i) a = 1/(a – 5)
⇒ a2 – 5a = 1
Divide by a
⇒ a – 5 = 1/a
⇒ a – 1/a = 5 Ans.
(ii) a = 1/(a – 5)
⇒ a2 – 5a = 1
Divide by a
⇒ a – 5 = 1/a
⇒ a – 1/a = 5
As we know
⇒ (a + 1/a)2 – (a – 1/a)2 = 4
⇒ (a + 1/a)2 – 52 = 4
⇒ (a + 1/a)2 = 25 + 4
∴ (a + 1/a) = √29 Ans.
(iii) (a²-1/a²)
using formula, (x² – y²) = (x – y)(x + y)
(a² – 1/a²) = (a – 1/a)(a + 1/a)
= 5√29
therefore, (a² – 1/a²) = 5√29 Ans.
(iv) (a²+1/a²)
using formula, x² + y² = (x + y)² – 2xy
so, (a² + 1/a²) = (a + 1/a)² – 2 × a × 1/a
= (a + 1/a)² – 2
= (√29)² – 2
= 29 – 2
= 27
therefore, (a² + 1/a²) = 27 Ans.
Que-28: Using (a+b)² = (a²+b²+2ab), evaluate :
(i) (137)² (ii) (1008)² (iii) (11.6)²
Solution- (i) (137)²
= (100+37)
This is in the form of (a+b)²
(a+b)² = a²+b²+2ab
a = 100 , b = 37
(100+37)² = (100)²+(37)²+2*100*37
= 10000+1369+200*37
= 11369+7400
= 18769 Ans.
(ii) (1008)²
(a+b) ² = a²+b² +2ab
(1008) ² = (1000+8) ²
= 1000² +8² + 2x 1000 x8
= 1000000 + 64 + 16000
= 1016064 Ans.
(iii) (11.6)²
(a+b)² = a²+b²+2ab
(11.6)² = (11+0.6)²
= (11)² + (0.6)² + 2 x 11 x 0.6
= 121 + 0.36 + 13.2
= 134.56 Ans.
Que-29: Using (a-b)² = (a²+b²-2ab), evaluate :
(i) (97)² (ii) (992)² (iii) (9.98)²
Solution- (97)²
(a-b)² = a²+b²-2ab
(97)² = (100-3)²
= (100)² + 3² – 2 x 100 x 3
= 10000 + 9 – 600
= 9409 Ans.
(ii) (992)²
(a-b)² = a²+b²-2ab
(992)² = (1000 – 8)²
= (1000)² + (8)² – 2 x 1000 x 8
= 1000000 + 64 – 16000
= 984064 Ans.
(iii) (9.98)²
(a-b)² = a²+b²-2ab
(9.98)² = (10-0.02)²
= (10)² + (0.02)² – 2 x 10 x 0.02
= 100 + 0.0004 – 0.4
= 99.6004 Ans.
Que-30: Fill in the blanks to make the given expression a perfect square :
(i) 16a² + 9b² +…. (ii) 25a² + 16b² – … (iii) 4a² + 20ab + ….. (iv) 9a² – 24ab + ….
Solution- (i) 24ab
(ii) 40ab
(iii) 25b²
(iv) 16b²
Que-31: If (a+b+c) = 14 and (a²+b²+c²) = 74,find the value of (ab+bc+ca)
Solution- We know, (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
=> (14)² = 74 + 2(ab + bc + ca)
=> ab + bc + ca = 122 / 2 = 61 Ans.
Que-32: If (a+b+c) = 15 and (ab+bc+ca)= 74, find the value of (a²+b²+c²)
Solution- We know, (a + b + c)² = a² + b² + c² = + 2(ab + bc + ca)
=> (15)² = a² + b² + c² + 2 x 74
=> 225 = a² + b² + c² = + 148
= a² + b² + c² = 225 – 148 = 77
a² + b² + c² = 77 Ans.
Que-33: If (a²+b²+c²) = 50 and (ab+bc+ca)= 47, find the value of (a+b+c)
Solution- We know, (a + b + c)² = a² + b² + c² = + 2(ab + bc + ca)
=> (a + b + c)² = 50 + 2 x 47
=> (a + b + c)² = 50 + 94
= (a + b + c)² = 144
a + b + c = √144
a + b + c = ±12 Ans.
Que-34: If (a²+b²+c²) = 89 and (ab-bc-ca)= 16, find the value of (a+b-c)
Solution- Given : (a² + b² + c²) = 89
ab – bc – ca = 16
We know that;
⇒ (a + b + (-c))² = a² + b² + (-c)² + 2ab + 2(b)(-c) + 2(-c)(a)
Using (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
⇒ (a + b + (-c))² = 89 + 2(ab – bc -ca)
⇒ (a + b – c)² = 89 + 2(16)
⇒ (a + b – c)² = 89 + 32
⇒ (a + b – c)² = 121
⇒ (a + b – c) = √121
⇒ (a + b – c) = 11 Ans.
– : End of Expansions Class 9 RS Aggarwal Exe-3A Goyal Brothers ICSE Foundation Maths Solutions : –
Return to :- RS Aggarwal Solutions for ICSE Class-9 Mathematics (Goyal Brother Prakashan)
Thanks
Please Share with your friends if helpful
Very helpfull for students like me. provides information clearly about every chapter
Very helpful but need to improve the text quality as sometimes the numberss are not understandable. Also i helps every students who want explainations and solutions for free.
not only pdf but also in text format (Typed) edition is also available exercise wise in latest edition